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[1] The radiative transfer theory has been extensively used
in geophysics, remote sensing, and astrophysics for more
than a century, but its physical basis had remained uncertain
until quite recently. This ambiguous situation has finally
changed, and the theory of radiative transfer in random
particulate media has become a legitimate branch of
Maxwell’s electromagnetics. This tutorial review is
intended to provide an accessible outline of recent basic
developments. It discusses elastic electromagnetic scattering
by random many-particle groups and summarizes the
unified microphysical approach to radiative transfer and

the effect of weak localization of electromagnetic waves
(otherwise known as coherent backscattering). It explains
the exact meaning of such fundamental concepts as single
and multiple scattering, demonstrates how the theories of
radiative transfer and weak localization originate in the
Maxwell equations, and exposes and corrects certain
misconceptions of the traditional phenomenological
approach to radiative transfer. It also discusses the
challenges facing the theories of multiple scattering,
radiative transfer, and weak localization in the context of
geophysical applications.
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1. INTRODUCTION

[2] The early history of the phenomenological theory of

radiative transfer (RT) describing electromagnetic energy

transport in macroscopic media composed of sparsely and

randomly distributed, elastically scattering particles is de-

scribed by Ivanov [1994]. He traces the origin of the

simplest form of the RT equation (RTE), no account of

polarization, idealized isotropically scattering particles, to

papers by Lommel [1887] and Chwolson [1889]. Unfortu-

nately, these early publications have been hardly noticed,

and the first introduction of the RTE has traditionally been

attributed to the paper by Schuster [1905].

[3] Gans [1924] was the first to account for the polari-

zation nature of light in the context of the phenomenological

RT theory. However, he analyzed only the special case of a

plane-parallel Rayleigh-scattering medium illuminated by

perpendicularly incident light and considered only the first

two components of the Stokes column vector. The case of

arbitrary illumination and arbitrary polarization was first

studied by Chandrasekhar [1950], but his analysis was

again limited to Rayleigh-scattering particulate media [see

also Chandrasekhar, 1989]. Finally, Rozenberg [1955]

introduced the most general form of the RTE, the so-called

vector RTE, which fully accounts for the polarization nature

of light and is applicable to scattering media composed of

arbitrarily shaped and arbitrarily oriented particles.

[4] Since its inception, the RT theory has had a remark-

able history of practical applications in numerous areas of

atmospheric radiation [Hansen and Travis, 1974; Sobolev,

1975; van de Hulst, 1980; Lenoble, 1985, 1993; Goody and

Yung, 1989; Liou, 1992, 2002; Yanovitskij, 1997; Marshak

and Davis, 2005; Bohren and Clothiaux, 2006; Zdunkowski

et al., 2007], remote sensing [Ishimaru, 1978; Ulaby and

Elachi, 1990; Fung, 1994; Stephens, 1994], oceanography

[Mobley, 1994; Thomas and Stamnes, 1999], image transfer

[Zege et al., 1991], astrophysics [Hansen and Hovenier,

1974; Dolginov et al., 1995], biomedicine [Khlebtsov et al.,

2002; Tuchin et al., 2006], and engineering [Viskanta and

Mengüç, 1987; Siegel and Howell, 2002; Modest, 2003]. At

the same time, it has also had a long history of confusing

and even misleading accounts of its fundamental principles.

The palette of phenomenological derivations of the RTE

encountered in various monographs, textbooks, and reviews

is quite rich, which by itself is a sign of a serious problem.

On one hand, most of the derivations are rather short and

either present the RTE as a trivial consequence of energy

conservation or expect the reader to accept the RTE as a

fundamental experimental law implicitly supplementing

other basic physical principles such as the laws of classical
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and quantum electrodynamics. On the other hand, there are

derivations that rise to the level of a philosophical essay in

which the RTE emerges as an allegedly logical outcome of a

multipage discourse almost devoid of formulas but full of

ill-defined collective effects, elementary volume elements,

and incoherent light rays. Some of the derivations even

invoke the concept of photons as localized particles of light,

discrete blobs of energy without phases, or corpuscles that

are moving according to the laws of classical mechanics. As

such, they imply that the notorious wave-particle duality of

light somehow manifests itself in the scattering process that

is fully controlled by the Maxwell equations.

[5] The ‘‘photonic’’ language [Pomraning, 1973;Mihalas

and Weibel-Mihalas, 1984; Oxenius, 1986] can be especially

inaccurate and misleading when applied to elastically scat-

tering, macroscopic particulate media. Indeed, one is

expected to accept that light propagates as a stream of

photons between the particles, decides to become a wave

when it impinges upon a particle and thereby generates a

multitude of spectacular effects such as diffraction, glory,

morphology-dependent resonances, etc. [Mishchenko et al.,

2002], and then changes its mind again upon leaving the

particle and resumes its journey in the form of photons. The

physical insolvency of this juggling with waves and photons

is obvious. First of all, it is the process of interaction of light

with matter that may require quantization of energy not the

process of light propagation. Second, photons appear as the

result of quantization of the electromagnetic field. Therefore,

whatever is called a ‘‘photon’’ in order to derive the RTE

remains an imaginary object with no physical meaning unless

the electromagnetic field is quantized explicitly. Needless to

say, the latter is never done. Third, it takes opening a standard

textbook on quantum electrodynamics or quantum optics

[Power, 1964; Akhiezer and Berestetskii, 1965; Mandel and

Wolf, 1995; Meystre and Sargent, 1999] to realize that a

photon is a quantum of a single normal mode of the

electromagnetic field and as such is associated with a plane

wave of definite wave vector but infinite lateral extent.

Therefore, photons are not localized particles of light [Kidd

et al., 1989; Lamb, 1995] and cannot be used to define

quantities such as the specific intensity or the specific

intensity column vector [Wolf, 1978]. Fourth, it is well

established, albeit not widely publicized, that the alleged

particle behavior of light in phenomena such as the photo-

electric and Compton effects is explainable in terms of the

semiclassical approach wherein the electromagnetic field is

not quantized and is described by the classical Maxwell

equations [Schiff, 1968; Kidd et al., 1989; Fearn and Lamb,

1991; Lamb, 1995].

[6] One of the pioneers of lasers and misers Charles H.

Townes remarked [Townes, 1984, p. 547] that ‘‘physicists

were somewhat diverted by an emphasis in the world of

physics on the photon properties of light rather than its

coherent aspects.’’ This remark remains quite topical.

[7] No matter how realistic the various phenomenologi-

cal accounts of RT may look at first sight [Preisendorfer,

1965], they inevitably fall apart upon scrutiny of their

physical foundation [Apresyan and Kravtsov, 1996]. It is

therefore not surprising that quite recently, Mandel and Wolf

[1995, p. 302] stated that ‘‘in spite of the extensive use of

the theory of radiative energy transfer, no satisfactory

derivation of its basic equation from electromagnetic theory

has been obtained up to now.’’ Furthermore, the phenom-

enological accounts completely overlook the fundamental

link between RT and the effect of weak localization (WL) of

electromagnetic waves in the backscattering direction (oth-

erwise known as the effect of coherent backscattering).

Most importantly, they conceal the irrefutable fact that as

long as scattering occurs without frequency redistribution

and the particles are macroscopic and can be characterized

by a refractive index, the RTE describes multiple scattering

of classical electromagnetic waves and, as such, must be

derived directly from the macroscopic Maxwell equations

via a series of well-defined and reproducible analytical steps

[Borovoy, 1966; Barabanenkov, 1975; Tsang et al., 1985].

[8] This ambiguous situation has finally changed, and a

complete derivation of the vector RTE directly from the

macroscopic Maxwell equations for the case of elastically

scattering discrete random media has been published

[Mishchenko, 2002, 2003; Mishchenko et al., 2006a]. This

derivation can be used to clarify the role and physical

meaning of the various quantities entering the RTE, estab-

lish a direct link between the theories of RT and WL, cross-

examine the terminologies used in the traditional phenom-

enological and the new microphysical approaches, and

identify and correct certain misconceptions of the phenom-

enological approach. These are the four principal goals of

this tutorial review. The overall objective is not to replace

recent monographs such as those by Tsang and Kong

[2001], Hovenier et al. [2004], Martin [2006], and

Mishchenko et al. [2006a] but rather to provide a brief yet

coherent outline that could convince the reader that the

microphysical approach to RT and WL is both necessary,

feasible, and fruitful. The challenges facing the theories of

multiple scattering, RT, and WL in the context of geophys-

ical applications are also classified and analyzed. Since the

emphasis is on the fundamentals of the multiple scattering,

RT, and WL theories, specific analytical and numerical

techniques for solving the RTE (such as the adding-dou-

bling, discrete ordinate, and Monte Carlo methods) and

practical applications are not discussed.

2. BASIC ASSUMPTIONS

[9] Terrestrial clouds consisting of randomly positioned

and randomly moving water droplets or ice crystals are

typical examples of so-called discrete (or particulate) ran-

dom media. The phenomenological theory of RT treats a

cloud as a fictitious continuous medium in which the

primary building unit is a vaguely defined elementary (or

differential) volume element. In contrast, the microphysical

theories of RT and WL account for the actual existence of

particles as discrete inclusions with a refractive index

different from that of the surrounding medium. Another

fundamental difference is that the microphysical approach

explicitly starts with the Maxwell equations as basic phys-
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ical laws governing the process of interaction of electro-

magnetic radiation with matter and invokes no ad hoc

physical concepts and laws not already contained in classi-

cal electromagnetics. The word ‘‘microphysical’’ then

serves to emphasize the direct traceability of the RT and

WL theories from fundamental physics not afforded by the

phenomenological approach.

[10] Specifically, the microphysical theories of RT and

WL rest on the following well-defined assumptions

intended to formulate the overall problem in strict physical

terms:

[11] 1. At each moment in time, the entire scattering

object (e.g., a cloud of water droplets or a powder surface)

can be represented by a specific spatial configuration of a

number N of discrete finite particles (Figure 1). The

unbounded host medium surrounding the scattering object

is homogeneous, linear, isotropic, and nonabsorbing. Each

particle is sufficiently large so that its atomic structure can

be ignored and the particle can be characterized by optical

constants appropriate to bulk matter. In electromagnetic

terms, the presence of a particle means that the optical

constants inside the particle volume are different from those

of the surrounding host medium.

[12] 2. The entire scattering object is illuminated by either

(1) a plane electromagnetic wave given by

Einc r; tð Þ ¼ Einc
0 exp ikinc � r� iwt

� �
Hinc r; tð Þ ¼ Hinc

0 exp ikinc � r� iwt
� �

�
r 2 <3 ð1Þ

with constant amplitudes E0
inc and H0

inc, where E is the

electric field and H the magnetic field, t is time, r is the

position (radius) vector, w is the angular frequency, kinc is

the real-valued wave vector, i = (�1)1/2, and <3 denotes the

entire three-dimensional space; or (2) a quasi-monochro-

matic parallel beam of light given by

Einc r; tð Þ ¼ Einc
0 tð Þ exp ikinc � r� iwt

� �
Hinc r; tð Þ ¼ Hinc

0 tð Þ exp ikinc � r� iwt
� �

�
r 2 <3; ð2Þ

where fluctuations in time of the complex amplitudes of the

electric and magnetic fields, E0
inc(t) and H0

inc(t), around their

respective mean values occur much more slowly than the

harmonic oscillations of the time factor exp(�iwt). This

restriction explicitly excludes other types of illumination

such as a focused laser beam of finite lateral extent or a

pulsed beam.

[13] 3. Nonlinear optics effects are excluded by assuming

that the optical constants of both the scattering object and

the surrounding medium are independent of the electric and

magnetic fields.

[14] 4. It is assumed that electromagnetic scattering is

elastic. This means that scattering occurs without frequency

redistribution, that is, the scattered light has the same

frequency as the incident light. This restriction excludes

inelastic scattering phenomena such as Raman and Brillouin

scattering as well as the specific consideration of the small

Doppler shift of frequency of the scattered light relative to

that of the incident light due the movement of the particles

with respect to the source of illumination.

[15] 5. It is assumed that any significant changes in the

scattering object (e.g., changes in particle positions and/or

orientations with respect to the laboratory reference frame)

occur over time intervals T much longer than the period

of time-harmonic oscillations of the electromagnetic field:

T � 2p/w.
[16] 6. The phenomenon of thermal emission is excluded.

This assumption is usually valid for objects at room or

lower temperature and for short-wave infrared and shorter

wavelengths.

3. MACROSCOPIC MAXWELL EQUATIONS

[17] The assumptions listed in section 2 imply that all

fields and sources are time-harmonic and allow one to fully

describe the total electromagnetic field at any moment in

time everywhere in space as the solution of the so-called

frequency domain macroscopic differential Maxwell

equations [Stratton, 1941; Jackson, 1999; Rothwell and

Cloud, 2001; Van Bladel, 2007]. The specific dependence

of the optical constants on spatial coordinates and the

corresponding boundary conditions at any moment are fully

defined by the instantaneous geometrical configuration of

the N particles (Figure 1).

[18] Specifically, it is convenient to factor out the time-

harmonic dependence of the electric and magnetic fields:

E(r, t) = exp(�iwt)E(r) and H(r, t) = exp(�iwt)H(r). The

frequency domain monochromatic Maxwell curl equations

describing the scattering problem in terms of the electric and

magnetic field amplitudes E(r) and H(r) can then be written

as follows:

r
 E rð Þ ¼ iwm0H rð Þ
r 
H rð Þ ¼ �iw�1E rð Þ

�
r 2 VEXT; ð3Þ

r 
 E rð Þ ¼ iwm0H rð Þ
r 
H rð Þ ¼ �iw�2 r;wð ÞE rð Þ

�
r 2 VINT: ð4Þ

In these equations, VINT is the cumulative ‘‘interior’’ vol-

ume occupied by the scattering object; VEXT is the infinite

exterior region such that VINT [ VEXT = <3; the host

medium and the scattering object are assumed to be non-

magnetic; m0 is the permeability of a vacuum; �1 is the real-

Figure 1. Scattering object in the form of a group of N
discrete particles.

RG2003 Mishchenko: RADIATIVE TRANSFER AND WEAK LOCALIZATION

3 of 33

RG2003



valued electric permittivity of the host medium; and �2(r, w)
is the complex permittivity of the scattering object. Since

the first relations in equations (3) and (4) yield the magnetic

field provided that the electric field is known everywhere,

the solution of equations (3) and (4) is usually sought in

terms of only the electric field.

[19] Although the amplitudes E(r) and H(r) do not

depend on time explicitly, they can change in time implic-

itly if the incident light is quasi-monochromatic and/or as a

consequence of temporal variability of the scattering object.

However, such changes occur much more slowly than the

time-harmonic oscillations described by the factor

exp(�iwt), which justifies the use of the frequency domain

Maxwell equations.

[20] It should be recognized that macroscopic electro-

magnetics ignores the discreteness of matter forming the

scattering particles and operates with continuous sources of

fields. Therefore, its predictions can fall short in cases

where quantum effects are important. Even so, the quantum

theory can often be used to determine the macroscopic

electromagnetic properties of bodies consisting of very

large numbers of atoms [Akhiezer and Peletminskii, 1981].

This approach works for particles larger than about 50 Å

[Huffman, 1988], thereby implying a very wide range of

validity of macroscopic electromagnetics. Thus, our use of

macroscopic electromagnetics as the point of departure is

founded on the well-established fact that this theory follows

directly from more fundamental physical theories as a

consequence of well-characterized and verifiable approxi-

mations. In other words, the equations of classical macro-

scopic electromagnetics are accepted here essentially as

basic axioms valid in a wide and well-defined range of

relevant situations. The reader will see that this approach

allows the development of a self-contained and self-consis-

tent theory in which the need to invoke alternative physical

concepts and laws is completely obviated.

4. ELECTROMAGNETIC SCATTERING

[21] The term ‘‘electromagnetic scattering’’ has been used

until now without a prior strict definition. We will now fill

this gap.

[22] The fundamental solution of the Maxwell equations

in the form of a time-harmonic plane electromagnetic wave

(equation (1)) represents the transport of electromagnetic

energy from one point to another and embodies the concept

of a perfectly monochromatic parallel beam of light. A

plane electromagnetic wave propagates in an infinite

nonabsorbing medium without a change in its intensity

or polarization state (see Figure 2a). However, the pres-

ence of a finite object modifies the electromagnetic field

that would otherwise exist in the unbounded homoge-

neous space. This modification is called electromagnetic

scattering.

[23] The difference between the total field in the presence

of the object, E(r, t), and the original field that would exist

in the absence of the object, Einc(r, t), can be thought of as

the field scattered by the object, Esca(r, t) (Figure 2b). In

other words, the total field in the presence of the object is

represented as the vector sum of the respective incident

(original) and scattered fields:

E r; tð Þ ¼ Einc r; tð Þ þ Esca r; tð Þ: ð5Þ

[24] The reader should recognize that the separation of

the total field into the incident and scattered fields according

to equation (5) is a purely mathematical procedure. This

means that classical frequency domain electromagnetic

scattering is not a physical process per se but rather an

abbreviated way to state that the total field computed in the

presence of an object is different from that computed in the

absence of the object. To ‘‘describe electromagnetic scat-

tering’’ then means to quantify the difference between the

two fields as a function of the object’s physical properties.

[25] To appreciate this fundamental point, let us recall

that a plane electromagnetic wave is a stationary solution of

the Maxwell equations in that it is assumed to have existed

forever and, apart from the time-harmonic factor exp(�iwt),
with no temporal change. The solution of the frequency

domain Maxwell equations in the presence of the scattering

object is also stationary. This implies that the scattered field

is also stationary since it is defined mathematically as the

difference between two stationary fields. Therefore, scatter-

ing of a time-harmonic electromagnetic wave is not a

Figure 2. Scattering by a fixed finite object. (a) Total electric field in the absence of the scattering
object. (b) Total electric field in the presence of the object decomposed into the incident and scattered
fields. In this case the object consists of three disjoint, stationary particles.
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temporally discrete event and cannot be visualized, for

example, in terms of a light ray (or a localized blob of

energy) approaching the object, then being scattered, and

then propagating in an outward direction.

[26] We have already mentioned that the practical appli-

cability of the frequency domain formalism implies the

stationarity of the electromagnetic field over a time interval

long compared with the period of time-harmonic oscilla-

tions. Therefore, this formalism can be used to describe

scattering of quasi-monochromatic as well as monochro-

matic light.

[27] An especially transparent description of electromag-

netic scattering is afforded by the so-called volume integral

equation (VIE) that follows from the frequency domain

macroscopic Maxwell equations and is exact [Saxon, 1955;

Mishchenko et al., 2002]:

E rð Þ ¼ Einc rð Þ þ k21

Z
VINT

dr0G
$

r; r0ð Þ � E r0ð Þ m2 r0ð Þ � 1
� �

¼ Einc rð Þ þ k21 I
$
þ 1

k21
r�r

� �

�
Z
VINT

dr0E r0ð Þ exp ik1 r� r0j jð Þ
4p r� r0j j m2 r0ð Þ � 1

� �
; r 2 <3; ð6Þ

where the common factor exp(�iwt) is omitted, m(r0) =

[�2(r
0, w)/�1]

1/2 is the refractive index of the interior relative

to that of the host exterior medium, k1 = jkincj = w(�1m0)
1/2 is

the wave number in the host medium, $G(r, r0) is the free

space dyadic Green’s function, $I is the identity dyadic,

and � is the dyadic product sign (see Appendix A for a brief

overview of dyads and dyadics). One can see that the VIE

expresses the total field everywhere in space in terms of the

total internal field. If the scattering object is absent, m(r0) �
1, then the total field is identically equal to the incident

field. Otherwise, the total field contains a scattering

component given by the second term on the right-hand

side of equation (6). Since the internal field is not known in

general, it must be found by solving the VIE either

analytically or numerically.

[28] The VIE makes explicit two fundamental facts. First,

the phenomenon of electromagnetic scattering is not limited

to the case of the incident field in the form of a plane

electromagnetic wave. In fact, it encompasses any incident

field as long as the latter satisfies the Maxwell equations,

e.g., spherical and cylindrical electromagnetic waves.

[29] Second, irrespective of the morphological structure

of the scattering object, the latter remains a single, unified

scatterer. Although the human eye may classify the scatter-

ing object as a ‘‘collection of discrete particles,’’ the

incident field always perceives the object as one scatterer

in the form of a specific spatial distribution of the relative

refractive index. The latter point can be made even more

explicit by expressing the scattered electric field in terms of

the incident field:

Esca rð Þ ¼
Z
VINT

dr0G
$

r; r0ð Þ �
Z
VINT

dr00T
$

r0; r00ð Þ � Einc r00ð Þ;

r 2 <3; ð7Þ

where $T is the so-called dyadic transition operator of the

scattering object [Tsang et al., 1985].

[30] Substituting equation (7) in equation (6) yields the

following integral equation for $T :

T
$

r; r0ð Þ ¼ k21 m2 rð Þ � 1
� �

d r� r0ð Þ I
$

þ k21 m2 rð Þ � 1
� � Z

VINT

dr00G
$

r; r00ð Þ

� T
$

r00; r0ð Þ; r; r0 2 VINT; ð8Þ

where d(r) is the three-dimensional delta function. Equa-

tions of this type appear in the quantum theory of scattering

and are called Lippmann-Schwinger equations [Newton,

1982]. The advantage of equations (7) and (8) is that $T is

the property of the scattering object only and is independent

of the incident field. Furthermore, $T provides a complete

description of electromagnetic scattering by the object for

any incident time-harmonic field. We will see in section 8

that the concept of dyadic transition operator plays a central

role in the theory of multiple scattering.

[31] The ubiquitous presence of electromagnetic scatter-

ing in natural and artificial environments explains its

fundamental importance in accurate modeling of electro-

magnetic energy transport for various science and engineer-

ing applications. This is also true of the situations in which

electromagnetic scattering is induced artificially and used

for particle characterization purposes. The exact theoretical

and numerical techniques for the computation of the elec-

tromagnetic field elastically scattered by a finite fixed object

composed of one or several particles are many and are

reviewed thoroughly by Mishchenko et al. [2000, 2002],

Kahnert [2003], Babenko et al. [2003], and Doicu et al.

[2006]. All of these techniques have certain practical

limitations in terms of the object morphology and object

size relative to the incident wavelength and cannot be used

yet to describe electromagnetic scattering by large multi-

particle objects such as atmospheric clouds, particulate

surfaces, and particle suspensions. This makes imperative

the use of well-characterized approximate solutions that do

not require unrealistic computer resources while being

sufficiently accurate for specific applications. One of the

main objectives of this review is to demonstrate that

the microphysical theories of RT and WL are two such

approximations.

[32] While the scattering of a time-harmonic electromag-

netic wave is not a temporally discrete event, one can also

consider the scattering of ultrashort electromagnetic pulses

and thereby explicitly trace the temporal evolution of the

electromagnetic field in space. This exercise provides a

more intuitive visualization of scattering as a temporal event

(D. Mackowski, personal communication, 2007) but, in

general, requires one to solve explicitly the original time

domain Maxwell equations. Doing this is possible in

principle [Taflove and Hagness, 2000] but limits consider-

ably the range of problems that can be solved analytically

and numerically. This explains our preference to stay in the

realm of the frequency domain electromagnetics.
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[33] Oliver Heaviside (1850–1925) was apparently the

first to introduce the general concept of electromagnetic

scattering in the context of Maxwell’s theory [Heaviside,

1950]. Formal mathematical aspects of the electromagnetic

scattering theory, including basic existence and uniqueness

theorems, are discussed by Müller [1957], Colton and Kress

[1998], Doicu et al. [2000], and Pike and Sabatier [2001].

5. FAR-FIELD AND NEAR-FIELD SCATTERING

[34] A fundamental property of the dyadic Green’s func-

tion is the following asymptotic behavior:

G
$

r; r0ð Þ !
r!1

I
$
� r̂� r̂

	 
 exp ik1rð Þ
4pr

exp �ik1r̂ � r0ð Þ; ð9Þ

where r = jrj and R̂ = r/r. Placing the origin of the

laboratory coordinate system O close to the geometrical

center of the scattering object (Figure 3a) and substituting

equations (1) and (9) in equation (7) yields [Mishchenko et

al., 2002, 2006a]

Esca rð Þ !
r!1

exp ik1rð Þ
r

Esca
1 n̂scað Þ ¼ exp ik1rð Þ

r
A
$

n̂sca; n̂inc
� �

� Einc
0 ; n̂sca � Esca

1 n̂scað Þ ¼ 0; ð10Þ

where n̂inc = kinc/k1 is a unit vector in the incidence

direction; n̂sca = r̂ is a unit vector in the scattering direction;

and $A is the so-called scattering dyadic such that

n̂sca � A
$

n̂sca; n̂inc
� �

¼ A
$

n̂sca; n̂inc
� �

� n̂inc ¼ 0; ð11Þ

where 0 is a zero vector. The scattering dyadic has the

dimension of length and describes the scattering of a plane

electromagnetic wave in the so-called far-field zone of the

object. It follows from equation (10) that the propagation of

the scattered electromagnetic wave is away from the object.

Furthermore, the electric and magnetic field vectors vibrate

in the plane perpendicular to the propagation direction, and

their amplitudes decay inversely with distance from the

object.

[35] The main convenience of the far-field approximation

is that it allows one to treat the entire object essentially as a

point source of scattered radiation and reduces the scattered

field to a simple outgoing spherical wave (Figure 2b).

Furthermore, equation (11) shows that only four out of

the nine components of the scattering dyadic are indepen-

dent in the spherical polar coordinate system centered at the

origin (Figure 3a). It is therefore convenient to introduce the

2 
 2 so-called amplitude scattering matrix S that describes

the transformation of the q and 8 components of the incident

plane wave into the q and 8 components of the scattered

spherical wave:

Esca rn̂scað Þ ¼ exp ik1rð Þ
r

S n̂sca; n̂inc
� �

Einc
0 : ð12Þ

Here E denotes a two-element column formed by the q and
8 components of the electric field vector:

E ¼ Eq

E8

� �
; ð13Þ

q 2 [0, p] is the polar (zenith) angle measured from the

positive z axis; and 8 2 [0, 2p ] is the azimuth angle

measured from the positive x axis in the clockwise direction

Figure 3. (a) Scattering in the far-field zone of the entire object. (b) Right-handed spherical coordinate
system.
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when looking in the direction of the positive z axis (Figure

3b). The amplitude scattering matrix has the dimension of

length and depends on the incidence and scattering

directions as well as on the size, morphology, composition,

and orientation of the scattering object with respect to the

coordinate system. It also depends on the choice of the

origin of the coordinate system relative to the object. If

known, the amplitude scattering matrix yields the scattered

and thus the total field, thereby providing a complete

description of the scattering pattern in the far-field zone.

[36] The conditions defining the far-field zone are as

follows [Mishchenko et al., 2006a]:

k1 r � að Þ � 1; ð14Þ

r � a; ð15Þ

r � k1a
2

2
; ð16Þ

where a is the radius of the smallest circumscribing sphere

of the entire scattering object centered at O. These

conditions are often satisfied for sufficiently small (k1a ]
104) isolated single-particle scatterers. The exact or

approximate computation of the amplitude scattering matrix

for such particles from the Maxwell equations is also often

possible, which explains the widespread use of the

amplitude scattering matrix as a single-particle electromag-

netic characteristic.

[37] However, there are many important cases in which

the conditions (14)–(16) are grossly violated. A good

example is remote sensing of water clouds in the terrestrial

atmosphere using detectors of electromagnetic radiation

mounted on aircraft or satellite platforms. Such detectors

typically measure radiation coming from a small part of a

cloud and do not ‘‘perceive’’ the entire cloud as a single

point-like scatterer (detector 1 in Figure 4). Furthermore, the

notion of the far-field zone of the cloud becomes completely

meaningless if a detector is placed inside the cloud (detector

2). It is thus clear that to model theoretically the response of

such detectors, one has to use scattering characteristics other

than the scattering dyadic or the amplitude scattering

matrix.

[38] To conclude this section, we note that important

early contributions to the subject of far-field electromagnet-

ic scattering were made by Silver [1949] and Müller [1957].

6. ACTUAL OBSERVABLES

[39] Because of high frequency of the time-harmonic

oscillations, traditional optical instruments cannot measure

the electric and magnetic fields associated with the incident

and scattered waves. Indeed, it follows from

1

T

Z tþT

t

dt0 exp �iwt0ð Þ ¼
T�2p=w

0 ð17Þ

that accumulating and averaging a signal proportional to the

electric or the magnetic field over a time interval T long

compared with the period of oscillations would yield a zero

net result. Therefore, optical instruments usually measure

quantities that have the dimension of energy flux and are

defined in such a way that the time-harmonic factor

exp(�iwt) vanishes upon multiplication by its complex

conjugate counterpart: exp(�iwt)[exp(�iwt)]* � 1. This

means that in order to make the theory applicable to

analyses of actual optical observations, the scattering

phenomenon must be characterized in terms of carefully

chosen derivative quantities that can be measured directly.

This explains the key importance of the concept of an actual

observable to the discipline of light scattering by particles.

[40] Although one can always define the magnitude and

the direction of the electromagnetic energy flux at any point

in space in terms of the Poynting vector [Jackson, 1999],

the latter carries no information about the polarization state

of the incident and scattered fields. The conventional

approach to ameliorate this problem dates back to Stokes

[1852]. He proposed using four real-valued quantities, I, Q,

U, and V, which have the dimension of monochromatic

energy flux (W m�2) and fully characterize a transverse

electromagnetic wave inasmuch as it is subject to practical

optical analysis. (By definition, the electric and magnetic

field vectors of a transverse electromagnetic wave vibrate in

the plane perpendicular to the propagation direction.) These

quantities, called the Stokes parameters, form the so-called

four-element Stokes column vector I and carry information

about both the total intensity I and the polarization state of

the wave.

Figure 4. Near-field scattering by a multiparticle group.
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[41] In the case of far-field scattering, the transversality of

both the incident plane wave and the scattered spherical

wave allows one to define the corresponding sets of Stokes

parameters:

Iinc ¼

I inc

Qinc

U inc

V inc

2
664

3
775 ¼ 1

2

ffiffiffiffiffi
�1
m0

r
Einc
0q Einc

0q

� �
* þ Einc

08 Einc
08

	 

*

Einc
0q Einc

0q

� �
* � Einc

08 Einc
08

	 

*

�Einc
0q Einc

08

	 

* � Einc

08 Einc
0q

� �
*

i Einc
08 Einc

0q

� �
* � Einc

0q Einc
08

	 

*

h i

2
6666664

3
7777775
;

ð18Þ

Isca rn̂scað Þ ¼

I sca

Qsca

U sca

V sca

2
664

3
775

¼ 1

r2
1

2

ffiffiffiffiffi
�1
m0

r
Esca
1q Esca

1q

� �
* þ Esca

18 Esca
18

	 

*

Esca
1q Esca

1q

� �
* � Esca

18 Esca
18

	 

*

�Esca
1q Esca

18

	 

* � Esca

18 Esca
1q

� �
*

i Esca
18 Esca

1q

� �
* � Esca

1q Esca
18

	 

*

h i

2
6666664

3
7777775
: ð19Þ

Then the response of a well-collimated polarization-

sensitive detector of light can be described in terms of the

4 
 4 so-called phase and extinction matrices.

[42] Specifically, detector 2 in Figure 5 collects only the

scattered light, and its polarized reading is fully character-

ized by the product of the phase matrix Z and the Stokes

column vector of the incident wave:

Signal 2 ¼ DSIsca rn̂scað Þ ¼ DS

r2
Z n̂sca; n̂inc
� �

Iinc; n̂sca 6¼ n̂inc;

ð20Þ

where DS is the area of the sensitive surface of the detector.

Thus the phase matrix realizes the transformation of the

Stokes parameters of the incident wave into the Stokes

parameters of the scattered wave. The elements of the phase

matrix have the dimension of area and are quadratic

combinations of the elements of the amplitude scattering

matrix S(n̂sca, n̂inc) [Mishchenko et al., 2002].

[43] Unlike detector 2, detector 1 is facing the incident

light, and its polarized reading consists of three parts: (1) the

one due to the incident light; (2) the one due to the forward

scattered light; and (3) the one due to the interference of the

incident wave and the wave scattered by the object in the

exact forward direction:

Signal 1 ¼
Z
DS

dSI rr̂ð Þ

¼ DSIinc þDS

r2
Z n̂inc; n̂inc
� �

Iinc � K n̂inc
� �

Iinc ð21Þ

Signal 1 ¼ DSIinc þO r�2
� �

� K n̂inc
� �

Iinc; ð22Þ

where O(r�2) is a 4 
 4 matrix with elements vanishing at

infinity as r�2 [Mishchenko et al., 2002]. The third part is

described by minus the product of the extinction matrix K

and the Stokes column vector of the incident wave. The

elements of the extinction matrix have the dimension of area

and are linear combinations of the elements of the forward

scattering amplitude matrix S(n̂inc, n̂inc) [Mishchenko et al.,

2002]. Equations (21) and (22) represent the most general

form of the so-called optical theorem.

[44] The situation depicted in Figure 5 is, in many

respects, the embodiment of the concept of light scattering.

Indeed, it demonstrates that in the absence of the object,

detector 2 would measure no signal, while the signal

measured by detector 1 would be proportional to the Stokes

column vector of the incident light. In the presence of the

object, the readings of both detectors change. The reading of

detector 2 is now proportional to the Stokes column vector

of the scattered field, while the polarization signal measured

by detector 1 is modified in two ways. First, the total

measured intensity is attenuated as a combined result of

the scattering of electromagnetic energy by the object in all

directions and, possibly, the transformation of electromag-

netic energy into other forms of energy (such as heat) inside

the object. Second, the modification rates for the four

Stokes components of the measured signal can be different.

This effect is typical of objects lacking perfect spherical

symmetry and is called dichroism. Thus, to describe far-

field scattering means, in effect, to quantify the differences

between the readings of detectors 1 and 2 in the presence of

the object and in the absence of the object. This quantifi-

cation can be fully achieved in terms of the phase and

extinction matrices that depend on object characteristics

such as size, shape, refractive index, and orientation and

can be readily computed provided that the amplitude

scattering matrix is known.

[45] The near field is not, in general, a transverse elec-

tromagnetic wave. Therefore, to characterize the response of

the ‘‘near-field’’ detectors shown in Figure 4, one must

define quantities other than the Stokes parameters and the

extinction and phase matrices. Still, the actual observables

must be defined in such a way that they can be measured by

an optical device ultimately recording the flux of electro-

Figure 5. Definition of the extinction and phase matrices.
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magnetic energy. We will see in sections 12 and 13 how this

is done in the framework of the theories of RT and WL.

7. FOLDY-LAX EQUATIONS

[46] As we have mentioned in section 4, many theoretical

techniques based on directly solving the differential Max-

well equations or their integral counterparts are applicable

to an arbitrary fixed finite object, be it a single physical

body or a cluster consisting of several distinct components,

either touching or spatially separated. These techniques are

based on treating the object as a single scatterer and yield

the total scattered field. However, if the object is a multi-

particle group, such as a cloud of water droplets, then it is

often convenient to represent the total scattered field as a

vector superposition of partial fields scattered by the indi-

vidual particles. This means that the total electric field at a

point r is written as follows:

E rð Þ ¼ Einc rð Þ þ
XN
i¼1

Esca
i rð Þ; r 2 <3; ð23Þ

where N is the number of particles in the group and Ei
sca(r)

is the ith partial scattered electric field.

[47] The partial scattered fields can be found by solving

vector so-called Foldy-Lax equations (FLEs) that follow

directly from the VIE and are exact [Babenko et al., 2003;

Mishchenko et al., 2006a]. Specifically, the ith partial

scattered field is given by

Esca
i rð Þ ¼

Z
Vi

dr0$G r; r0ð Þ �
Z
Vi

dr00$Ti r
0; r00ð Þ � Ei r

00ð Þ; ð24Þ

where Vi is the volume occupied by the ith particle, Ei(r
00) is

the electric field ‘‘exciting’’ particle i, and the N dyadics
$Ti can be found by solving individually the following

Lippmann-Schwinger equation:

T
$
i r; r

0ð Þ ¼ k21 m2
i rð Þ � 1

� �
d r� r0ð Þ I

$

þ k21 m2
i rð Þ � 1

� � Z
Vi

dr00G
$

r; r00ð Þ

� T
$
i r

00; r0ð Þ; r; r0 2 Vi: ð25Þ

Comparison with equation (8) shows that $Ti for each i is,

in fact, the dyadic transition operator of particle i with

respect to the fixed laboratory coordinate system computed

in the absence of all the other particles. Thus, the N dyadic

transition operators are totally independent of each other.

However, the exciting fields are interdependent and must be

found by solving the following system of N linear integral

equations:

Ei rð Þ ¼ Einc rð Þ þ
XN

j 6¼ið Þ¼1

Z
Vj

dr0G
$

r; r0ð Þ

�
Z
Vj

dr00T
$
j r

0; r00ð Þ � Ej r
00ð Þ;

r 2 Vi; i ¼ 1; . . . ;N : ð26Þ

[48] In general, the FLEs (23)–(26) are equivalent to

equations (7) and (8). However, the fact that $Ti for each i

is an individual property of the ith particle computed as if

this particle were alone allows one to introduce the concept

of multiple scattering. This will be the subject of section 8.

[49] One specific, numerically exact approach to solve

the FLEs is the so-called superposition T matrix method that

involves the expansion of the various electric fields in

vector spherical wave functions centered either at the

common origin of the entire scattering object or at the

individual particle origins [Fuller and Mackowski, 2000;

Mishchenko et al., 2002; Doicu et al., 2006; Borghese et al.,

2007]. This technique is especially efficient in application to

groups of spherically symmetric particles and will be used

in section 11 to illustrate the scattering effects that can and

cannot be described by the theories of RT and WL.

8. WHAT IS MULTIPLE SCATTERING?

[50] Let us rewrite equations (23), (24), and (26) in the

following compact operator form:

E ¼ Einc þ
XN
i¼1

ĜT̂ iEi; ð27Þ

Ei ¼ Einc þ
XN

j 6¼ið Þ¼1

ĜT̂ jEj; ð28Þ

where

ĜT̂ jEj ¼
Z
Vj

dr0$G r; r0ð Þ �
Z
Vj

dr00$Tj r
0; r00ð Þ � Ej r

00ð Þ: ð29Þ

Iterating equation (28) yields

Ei ¼ Einc þ
XN

j 6¼ið Þ¼1

ĜT̂ jE
inc þ

XN
j 6¼ið Þ¼1

l 6¼jð Þ¼1

ĜT̂ jĜT̂ lE
inc

þ
XN
j 6¼ið Þ¼1

l 6¼jð Þ¼1

m 6¼lð Þ¼1

ĜT̂ jĜT̂ lĜT̂mE
inc þ � � � ; ð30Þ

whereas the substitution of equation (30) in equation (27)

gives what can be interpreted as an order-of-scattering

expansion of the total electric field:

E ¼ Einc þ Esca; ð31Þ

Esca ¼
XN
i¼1

ĜT̂ iE
inc þ

XN
i¼1

j 6¼ið Þ¼1

ĜT̂ iĜT̂ jE
inc

þ
XN
i¼1

j 6¼ið Þ¼1

l 6¼jð Þ¼1

ĜT̂ iĜT̂ jĜT̂ lE
inc þ � � � : ð32Þ
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Indeed, the dyadic transition operators are independent of

each other, and each of them can be interpreted as a unique

and complete electromagnetic identifier of the correspond-

ing particle. Therefore, ĜT̂ iE
inc can be interpreted as the

partial scattered field at the observation point generated by

particle i in response to the excitation by the incident field

only, ĜT̂ iĜT̂ jE
inc is the partial field generated by the same

particle in response to the excitation caused by particle j in

response to the excitation by the incident field, etc. Thus,

the first term on the right-hand side of equation (32) can be

interpreted as the sum of all single-scattering contributions,

the second term is the sum of all double-scattering

contributions, etc. The first term on the right-hand side of

equation (31) represents the unscattered (i.e., incident) field.

This order-of-scattering interpretation of equations (31) and

(32) is visualized in Figure 6.

[51] We will see very soon that equations (31) and (32)

constitute a very fruitful way of rewriting the original

FLEs and that the use of the ‘‘multiple scattering’’ termi-

nology is a convenient and compact way of illustrating

their numerous consequences. It is important to recognize,

however, that besides being an interpretation and visualiza-

tion tool, the concept of multiple scattering does not

represent a physical process per se in the framework of

frequency domain electromagnetics. For example, the term
ĜT̂ iĜT̂ jĜT̂ lE

inc on the right-hand side of equation (32)

cannot be interpreted by saying that a light ray (or a

localized blob of energy) approaches particle l, gets

scattered by particle l toward particle j, approaches particle

j, gets scattered by particle j toward particle i, approaches

particle i, gets scattered by particle i toward the observation

point, and finally arrives at the observation point. Indeed, it

follows from equation (26) that all mutual particle-particle

excitations occur simultaneously and are not temporally

discrete and ordered events. The purely mathematical

character of the multiple-scattering interpretation of equa-

tion (32) becomes especially apparent upon realizing that

this equation is quite general and can be applied not only to

a multiparticle group but also to a single body wherein the

latter is subdivided arbitrarily into N nonoverlapping

adjacent geometrical regions Vi.

[52] It is convenient to represent the order-of-scattering

expansion (31)–(32) of the electric field using the diagram

method. In Figure 7, the arrows represent the incident field,

the line with the circle symbol denotes the ‘‘multiplication’’

of a field by a ĜT̂ dyadic according to equation (29), and

the dashed curve indicates that two scattering ‘‘events’’

involve the same particle. The first five terms on the

right-hand side of the diagrammatic expression in Figure

7 describe the (cumulative) contributions of the five scat-

tering scenarios, respectively, illustrated in Figure 6.

9. FAR-FIELD FOLDY-LAX EQUATIONS

[53] We have seen in section 5 that as a direct conse-

quence of equations (7) and (9), the behavior of the

scattered field becomes much simpler in the far-field zone

of the scattering object. Since the structure of equations (24)

and (26) is analogous to that of equation (7), one can expect

a similar simplification of the FLEs upon making the

following two assumptions: (1) The N particles forming

the group are separated widely enough that each of them is

located in the far-field zones of all the other particles.

(2) The observation point is located in the far-field zone of

any particle forming the group.

[54] Indeed, the contribution of the jth particle to the field

exciting the ith particle in equation (26) can now be

represented as a simple outgoing spherical wavelet centered

at the origin of particle j. The radius of curvature of this

Figure 6. (a) Unscattered (incident) field, (b) single
scattering, (c) double scattering, and (d and e) triple
scattering.

Figure 7. Diagrammatic representation of equations (31)
and (32).
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wavelet at the origin of particle i is much larger than the size

of particle i, so that the wavelet can be considered as locally

plane. The scattering of this wavelet by particle i can

then be described in terms of the corresponding scattering

dyadic $Ai (equation (10)). As a result, the system of

integral FLEs turns into a system of algebraic equations

[Mishchenko et al., 2006a].

[55] Specifically, assuming that the incident field is a

plane electromagnetic wave propagating in the direction
n̂inc, we have for the total field at a point r located in the far-

field zone of all the particles:

E rð Þ ¼ Einc rð Þ þ
XN
i¼1

G rið ÞA
$
i r̂i; n̂

inc
� �

� Einc Rið Þ

þ
XN
i¼1

G rið Þ
XN

j 6¼ið Þ¼1

A
$
i r̂i; R̂ij

� �
� Eij; ð33Þ

where G(r) = exp(ik1r)/r, ri is the distance between the

origin of particle i and the observation point, r̂i is the unit

vector directed from the origin of particle i toward the

observation point, Ri is the position vector of the ith particle

origin, and R̂ij is the unit vector directed from the origin

of particle j toward the origin of particle i (Figure 8).

Equation (33) shows that the total field at any point located

sufficiently far from any particle in the group is the

superposition of the incident plane wave and N spherical

waves generated by and centered at the N particles. The

amplitudes of the particle-particle excitations Eij are found

from the following system of N(N � 1) linear algebraic

equations:

Eij ¼ G Rij

� �
A
$
j R̂ij; n̂

inc
� �

� Einc Rj

� �

þ G Rij

� � XN
l 6¼jð Þ¼1

A
$
j R̂ij; R̂jl

� �
� Ejl;

i; j ¼ 1; . . . ;N ; j 6¼ i; ð34Þ

where Rij is the distance between the origins of particles j

and i.

[56] This system is much simpler than the original system

of FLEs and can, in principle, be solved with a computer

provided that N is not too large. The expression for the

order-of-scattering expansion of the total field also becomes

much simpler:

E ¼ Einc þ
XN
i¼1

B
$
ri0 � Einc

i þ
XN
i¼1

XN
j 6¼ið Þ¼1

B
$
rij � B

$
ij0 � Einc

j

þ
XN
i¼1

XN
j 6¼ið Þ¼1

XN
l 6¼jð Þ¼1

B
$
rij � B

$
ijl � B

$
jl0 � Einc

l

þ
XN
i¼1

XN
j 6¼ið Þ¼1

XN
l 6¼jð Þ¼1

XN
m 6¼lð Þ¼1

B
$
rij � B

$
ijl

� B
$
jlm � B

$
lm0 � Einc

m þ � � � ; ð35Þ

where

E ¼ E rð Þ; Einc ¼ Einc rð Þ; Einc
i ¼ Einc Rið Þ; ð36Þ

B
$
ri0 ¼ G rið ÞA

$
i r̂i; n̂

inc
� �

; ð37Þ

B
$
rij ¼ G rið ÞA

$
i r̂i; R̂ij

� �
; ð38Þ

B
$
ij0 ¼ G Rij

� �
A
$
j R̂ij; n̂

inc
� �

; ð39Þ

B
$
ijl ¼ G Rij

� �
A
$
j R̂ij; R̂jl

� �
: ð40Þ

[57] A remarkable feature of the above formulas is that

now the role of the unique electromagnetic identifier of each

particle is assumed by the corresponding scattering dyadic,

that is, the same quantity that would completely describe

far-field scattering by this particle if it were alone rather

than a member of the group. Although the dyadic transition

operator is the most general scattering property of a particle,

the scattering dyadic or, equivalently, the amplitude scatter-

ing matrix have been used so frequently to describe far-field

scattering by a particle that they have become almost

synonymic with the words ‘‘single scattering.’’ This appears

to add some notoriety to the order-of-scattering interpreta-

tion of equation (35). One should not forget, however, that

equation (35) is just an approximate version of equations

(31) and (32) and does not make multiple scattering a real

physical process. The diagrammatic formula shown in

Figure 7 can also represent equation (35) provided that

the line with the circle symbol is now interpreted as the

multiplication of a field by a $B dyadic.

10. ERGODICITY

[58] Most of our discussion of electromagnetic scattering

in sections 4–9 has been based on the assumption that the

Figure 8. Scattering contribution caused by particle i in
response to excitation by particle j.
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configuration of the scattering object with respect to the

laboratory reference frame is fixed. However, quite often

one has to deal with an object in the form of a multiparticle

group in which the particles are randomly rotating and

moving relative to each other. The particles may even

change their sizes and shapes owing to evaporation, subli-

mation, condensation, or melting. Important examples of

such ‘‘stochastic’’ scattering objects are atmospheric clouds

consisting of water droplets and/or ice crystals, plumes of

aerosol particles, and various particle suspensions. The

physical and chemical processes controlling the temporal

evolution of such objects can be extremely complex and

convoluted.

[59] Although a random group can be described at any

given moment in terms of a specific fixed particle config-

uration, any measurement takes a finite amount of time

during which the group goes through an infinite sequence of

evolving discrete configurations. Sometimes the result of

the measurement can be modeled numerically by solving

the Maxwell equations for many time sequential discrete

configurations and then taking the average. A far more

practical approach in most cases is based on the assumption

of ergodicity. Specifically, all further discussion will be

based on the following two fundamental premises: (1) The

scattering object can be adequately characterized at any

moment in time by a finite set of physical parameters.

(2) The scattering object is sufficiently variable in time,

and the time interval necessary to take a measurement is

sufficiently long that averaging the scattering signal over

this interval is essentially equivalent to averaging the signal

over an appropriate analytical probability distribution of the

physical parameters characterizing the scattering object. In

other words, we will assume that averaging over time for

one specific realization of a random scattering process is

equivalent to ensemble averaging.

[60] To better understand the meaning of ergodicity, let us

consider the measurement of a scattering characteristic A of

a cloud of spherical water droplets. This characteristic

depends on time implicitly by being a function of time-

dependent physical parameters of the cloud such as the

coordinates and radii of all the constituent particles. The full

set of particle positions and radii determines the state of the

entire cloud at a moment in time and will be denoted

collectively by y. In order to interpret the measurement of

A[y(t)] accumulated over a period of time extending from t

= t0 to t = t0 + T, one needs a way of predicting theoretically

the average value

A ¼ 1

T

Z t0þT

t0

dtA y tð Þ½ �: ð41Þ

[61] As we have already mentioned, the temporal evolu-

tion of the cloud of water droplets is described by an

intricate system of equations representing the various phys-

ical and chemical processes in action. To incorporate the

solution of this system of equations for each moment of

time into the theoretical averaging procedure (41) can be a

formidable task and is never done. Instead, averaging over

time is replaced by ensemble averaging based on the

following rationale.

[62] Although the coordinates and sizes of water droplets

in the cloud change with time in a specific way, the range of

instantaneous states of the cloud captured by the detector

during the measurement becomes representative of that

captured over an infinite period of time provided that T is

sufficiently long. We thus have

A � lim
t!1

1

t

Z t0þt

t0

dtA y tð Þ½ � ¼ hAit: ð42Þ

Notice now that the infinite integral in equation (42) can be

expected to ‘‘sample’’ every physically realizable state y of

the cloud. Furthermore, this sampling is statistically

representative in that the number of times each state is

sampled is large and tends to infinity in the limit t ! 1.

Most importantly, the cumulative contribution of a cloud

state y to hAit is independent of the specific moments in

time when this state actually occurred in the process of the

temporal evolution of the cloud. Rather, it depends on how

many times this state was sampled. Therefore, this

cumulative contribution can be thought of as being

proportional to the probability of occurrence of the state y
at any moment of time. This means that instead of

specifying the state of the cloud at each moment t and

integrating over all t, one can introduce an appropriate time-

independent probability density function p(y) and integrate

over the entire physically realizable range of cloud states:

hAit �
Z

dyp yð ÞA yð Þ ¼ hAiy; ð43Þ

where

Z
dyp yð Þ ¼ 1: ð44Þ

[63] Equation (43) is the formal mathematical expression

of the principle of ergodicity introduced above. Physical

processes such as Brownian motion and turbulence often

help to establish a significant degree of randomness of

particle positions and orientations, which seems to explain

why many theoretical predictions based on the ergodic

hypothesis have agreed very well with experimental data

[Berne and Pecora, 1976]. The practical meaning of

ergodicity in the framework of the theories of RT and WL

will be discussed in section 12.

[64] The ergodic hypothesis was introduced by James

Clerk Maxwell (1831–1879) [Maxwell, 1879] and Ludwig

Boltzmann (1844–1906) as a basic underlying principle of

statistical mechanics. The fundamentals of the ergodic

theory, its relation to the famous Poincaré recurrence

theorem [Poincaré, 1890], and its applications to statistical

mechanics and kinetic theory are described by Uhlenbeck

and Ford [1963] and Farquhar [1964]. Instructive discus-

sions of the ergodic hypothesis and specific examples of
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nonergodic scattering media are given by Pusey and van

Megen [1989], Joosten et al. [1990], Xue et al. [1992],

Nisato et al. [2000], and Scheffold et al. [2001].

11. MULTIPLE SCATTERING BY RANDOM
PARTICULATE MEDIA: EXACT RESULTS

[65] The far-field order-of-scattering expansion (35) cou-

pled with the principle of ergodicity provides the foundation

necessary to develop the microphysical theories of RT and

WL. However, before proceeding with the outline of these

inherently approximate theories, in this section we will use

numerically exact results in order to develop an understand-

ing of what further assumptions and approximations will be

necessary and what specific scattering effects these theories

may or may not be expected to encompass. To this end, we

will analyze T matrix results computed for a macroscopic

volume filled with randomly distributed wavelength-sized

particles [Mishchenko et al., 2007a]. For practical reasons,

the superposition T matrix method cannot be used yet to

handle random media consisting of very large numbers of

particles such as clouds, colloids, and powder surfaces.

However, it does provide the potential to model rather

complex particulate systems and thereby simulate the effect

of randomness of particle positions as well as the onset and

evolution of various ‘‘multiple-scattering’’ effects with

increasing number of particles in a statistically homoge-

neous volume of discrete random medium.

11.1. Static and Dynamic Light Scattering

[66] As we have explained in section 10, in order to

simulate measurements of light scattering by a rapidly

changing object one needs to solve the Maxwell equations

repeatedly for a representative set of distinct object config-

urations. After the set of solutions of the Maxwell equations

has been obtained, one has a choice of (1) analyzing the

statistical information content of differences in the individ-

ual solutions or (2) applying an averaging procedure and

thereby isolating the static component of the scattering

pattern. These two approaches are known as dynamic and

static light scattering [Berne and Pecora, 1976; Brown,

1993; Mishchenko et al., 2006a].

11.2. Fixed Configurations of Randomly Positioned
Particles: Speckle

[67] Let us assume that a number N of identical spherical

particles are distributed randomly throughout a spherical

volume V with a radius R much greater than the particle

radius a, as shown in Figure 9a. The size parameter of the

particles is fixed at k1a = 4, whereas the size parameter of

the spherical volume is fixed at k1R = 40. The refractive

index of the particles relative to that of the surrounding

medium is 1.32. The large spherical volume V is illuminated

by a plane electromagnetic wave. The incidence direction

coincides with the positive direction of the z axis of the

laboratory reference frame, and the meridional plane of the

incidence direction coincides with the xz half plane with x �
0 (see Figure 3). The angular distribution and polarization

state of the scattered light in the far-field zone of the entire

scattering volume is described by the Stokes phase matrix Z
(equation (20)).

[68] Let us first assume that the incident light is circularly

polarized in the counterclockwise sense when viewed in the

direction of propagation, which implies that V inc = I inc and

Q inc = U inc = 0. Figures 10a–10d show the far-field

angular distributions of the intensity I sca scattered in the

backward hemisphere by the large spherical volume filled

with N = 1, 5, 20, and 80 particles. The individual particle

positions were chosen randomly using a random coordinate

generator; but otherwise, they are fixed. The scattering

pattern for N = 1 is rather smooth and perfectly azimuthally

symmetric, as it should be for a single wavelength-sized

spherical particle. However, Figures 10b–10d demonstrate

typical speckle patterns.

[69] The origin of the speckle can be explained as

follows. Equations (32) and (9) suggest that at the distant

observation point, the partial field due to any particle

sequence contributing to the right-hand side of equation

(32) becomes an outgoing spherical wavelet centered at the

last particle of the sequence. For example, the term
ĜT̂ iĜT̂ jĜT̂ lE

inc becomes a spherical wavelet centered at

particle i since the leftmost dyadic Green’s function takes

the following asymptotic form:

G
$

r; r0ð Þ ¼ G
$

r� Ri; r
0 � Rið Þ

¼ G
$

rir̂i; r
0 � Rið Þ !

ri!1
I
$
� r̂i � r̂i

	 


� exp ik1rið Þ
4pri

exp �ik1r̂i � r0 � Rið Þ½ �; r0 2 Vi; ð45Þ

where the notation is explained in Figure 8, and we have

made use of the translational invariance property of $G.

This occurs irrespective of whether the particles are densely

packed or sparsely distributed. The Stokes parameters of the

scattered light (equation (19)) can be directly expressed in

terms of the elements of the scattering coherency dyad
$rsca = Esca � (Esca)*:

Isca ¼ 1

2

ffiffiffiffiffi
�1
m0

r q̂
sca � r$

sca
� q̂sca þ 8̂sca � r$

sca
� 8̂sca

q̂
sca � r$

sca
� q̂sca � 8̂sca � r$

sca
� 8̂sca

�q̂
sca � r$

sca
� 8̂sca � 8̂sca � r$

sca
� q̂sca

i 8̂sca � r$
sca

� q̂sca � q̂
sca � r$

sca
� 8̂sca

	 


2
66664

3
77775; ð46Þ

where q̂sca and 8̂sca are the polar angle and azimuth angle

unit vectors such that n̂sca = q̂sca 
 8̂sca. The dyadic product

of the right-hand side of equation (32) and its complex-

conjugate counterpart is the sum of an infinite number of

terms, each describing the result of interference of two

spherical wavelets centered at the end particles of a pair of

particle sequences.

[70] One such pair of particle sequences is shown in

Figure 9b. If the interference of the corresponding spherical

wavelets is constructive (destructive) then it serves to

increase (decrease) the total intensity scattered in the direc-

tion n̂sca. The total intensity is the sum of the interference
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results contributed by all possible pairs of scattering sequen-

ces. The typical angular width of each interference maxi-

mum or minimum is proportional to 1/k1R, whereas the

number of these maxima and minima grows swiftly with

increasing N. These two factors explain the spotty

appearance of the scattering patterns in Figures 10b–10d.

[71] Of course, the speckle pattern depends not only on

the number of particles N but also on the specific way they

are arranged with respect to the laboratory coordinate

system. This is illustrated by Figures 10d and 10e computed

for two different random 80-particle configurations shown

in Figure 9c.

11.3. Static Scattering

[72] Figures 10d and 10e illustrate the range of variability

of the speckle pattern that can be expected upon even

minute changes in a random multiparticle configuration.

Obviously, neither the speckle pattern nor its variability are

reproduced by the classical theories of RT and WL, which

indicates that neither theory describes the instantaneous

state of electromagnetic radiation in a discrete random

medium. Instead, both theories fall in the realm of static

scattering and describe the result of averaging the relevant

optical observables over a significant period of time or,

equivalently, over a significant range of random particle

positions.

[73] To illustrate this fundamental point, one needs an

efficient way of averaging the computed scattering signal

over very many configurations of the N-particle group. A

brute force solution would be to use a random coordinate

generator repeatedly to create a large number of different N-

particle configurations and then average numerically the

corresponding individual T matrix results. The more

effective approach used here is to create only one random

N-particle configuration and then average over all possible

orientations of this configuration with respect to the

laboratory coordinate system. This procedure yields

an infinite continuous set of random realizations of the

N-particle group and takes full advantage of the highly

efficient orientation averaging procedure afforded by the

Figure 9. (a) Spherical scattering volume V filled with N randomly positioned particles. (b) Interference
origin of speckle. (c) Two random realizations of the 80-particle group. (d) Forward scattering
interference. (e) Interference origin of coherent backscattering. (f) Interference origin of the diffuse
background.
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superposition T matrix method [Mackowski and Mishchenko,

1996; Mishchenko et al., 2002].

[74] Figure 10f shows the result of averaging the speckle

pattern over the uniform orientation distribution of the 80-

particle configuration used to compute Figure 10d. One can

see that with the exception of a notable backscattering peak,

the speckle structure is essentially gone. This is not surpris-

ing. Indeed, each speckle element is the result of construc-

tive or destructive interference of two wavelets scattered

along specific particle sequences such as those shown in

Figure 9b. The phase difference between the wavelets

changes randomly as the particles move, so that the average

result of the interference is zero. However, there are certain

pairs of wavelets that interfere constructively irrespective of

particle positions and thereby are responsible for the resid-

ual scattering pattern. We will demonstrate below that the

backscattering intensity peak seen in Figure 10f as well as

the smooth intensity background is, in fact, caused by

special classes of such wavelet pairs.

[75] In what follows, we employ the concept of multiple

scattering to interpret various effects of increasing the

number of particles filling the scattering volume on the

static scattering patterns obtained by averaging over all

orientations of a random N-particle configuration with

respect to the laboratory reference frame. We make a

simplifying assumption that 8sca = 0 and define the

scattering direction in terms of the scattering angle Q =
qsca. Then the scattering process can be conveniently

described in terms of the so-called normalized Stokes

scattering matrix [Mishchenko et al., 2002, 2006a], which is

a particular case of the phase matrix and is given by

~F Qð Þ ¼

a1 Qð Þ b1 Qð Þ 0 0

b1 Qð Þ a2 Qð Þ 0 0

0 0 a3 Qð Þ b2 Qð Þ
0 0 �b2 Qð Þ a4 Qð Þ

2
664

3
775: ð47Þ

The specific block-diagonal structure of this matrix [van de

Hulst, 1957] is confirmed by the numerically exact T matrix

results and is largely caused by averaging over the uniform

Figure 10. Angular distribution of scattered intensity in the far-field zone of the spherical volume V
filled with N particles. (a) N = 1, fixed orientation. (b) N = 5, fixed orientation. (c) N = 20, fixed
orientation. (d) and (e) N = 80, fixed orientation. (f) N = 80, random orientation. The gray scale is
individually adjusted in order to maximally reveal the details of each scattering pattern. Figure 10a also
shows the angular coordinates used for all images.
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orientation distribution of a multiparticle group coupled

with sufficient randomness of particle positions throughout

the scattering volume. All scattering matrix elements

denoted in equation (47) by a zero have been found to be

at least an order of magnitude smaller than the smallest

nonzero element (in the absolute value sense). The (1, 1)

element, called the phase function, satisfies the following

normalization condition:

1

2

Z p

0

dQ sinQa1 Qð Þ ¼ 1: ð48Þ

The phase function describes the angular distribution of the

scattered intensity provided that the incident light is

unpolarized.

[76] The top left-hand plot of Figure 11 vividly demon-

strates several fundamental consequences of increasing the

number of particles in the scattering volume. First, the

constructive interference of light singly scattered by the

component particles in the exact forward direction causes a

strong forward scattering enhancement [Mishchenko et al.,

2006a]. This feature is further detailed in Figure 12a and

explained in Figure 9d. It can be called forward scattering

Figure 11. Elements of the normalized Stokes scattering matrix computed for a k1R = 40 spherical
volume of discrete random medium filled with N = 1, . . ., 240 particles.
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localization of electromagnetic waves. Indeed, the exact

forward scattering direction is unique in that the phase of

the wavelets singly forward scattered by all the particles in

the volume is exactly the same irrespective of the specific

particle positions (see the left-hand plot of Figure 9d). In the

absence of multiple scattering, the constructive interference

of these wavelets would lead to an increase of the forward

scattering phase function a1(0�) by a factor of N. This

increase does occur for N = 2 and 5 (Figure 12a), but then it

slows down, and by the time N reaches the value 160, the

a1(0�) value saturates. This behavior can be interpreted in

terms of a multiple-scattering effect whereby particle 3 (see

the right-hand plot of Figure 9d) ‘‘shades’’ particle 2 by

attenuating the incident field exciting particle 2. In fact, we

will see in section 12 that it is this multiple-scattering effect

that leads to the exponential extinction law in the frame-

work of the RT theory.

[77] Second, the phase functions at scattering angles Q >

170� start to develop a backscattering enhancement that

becomes quite pronounced for N � 160 (see Figure 12b).

This feature is a typical manifestation of WL of electro-

magnetic waves in the backscattering direction, otherwise

Figure 12. Scattering properties of a spherical volume of discrete random medium.
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known as the coherent backscattering (CB) effect. (The term

‘‘weak localization of electromagnetic waves’’ was intro-

duced by solid-state physicists in order to draw an analogy

with the effect of weak localization of electrons in dirty

metals [Sheng, 2006].) The standard explanation of WL is

illustrated in Figure 9e and is as follows: The conjugate

wavelets scattered along the same string of n particles but in

opposite directions interfere in the far-field zone, the

interference being constructive or destructive depending

on the respective phase difference,

D ¼ k1 rn � r1ð Þ � n̂inc þ n̂sca
� �

: ð49Þ

If the observation direction n̂sca is far from the exact

backscattering direction given by �n̂inc, then the average

effect of interference of the conjugate wavelets scattered

along various strings of particles is zero owing to

randomness of particle positions. However, at exactly the

backscattering direction, n̂sca = �n̂inc, the phase difference

between the conjugate paths involving any string of

particles is identically equal to zero, and the interference

is always constructive and causes an intensity peak.

[78] The third consequence of increasing N is that the

phase functions at scattering angles 30� � Q � 170�
become progressively smooth and featureless, thereby

causing the ‘‘diffuse’’ intensity background clearly identifi-

able in Figure 10f. The major contributor to the background

intensity is another class of wavelet pairs as illustrated in

Figure 9f. Now the wavelet scattered along a string of n

particles interferes with itself. Since the corresponding

phase difference is exactly equal to zero irrespective of

particle positions, the self-interference is always construc-

tive. Therefore, the contribution of this class of wavelet

pairs survives the ensemble averaging for any n̂inc and n̂sca.

The smoothness of the background intensity can be

interpreted as a typical result of an increasing amount of

multiple scattering whereby light undergoing many scatter-

ing events ‘‘forgets’’ the initial incidence direction n̂inc and

is more likely to contribute equally to all ‘‘exit’’ directions
n̂sca.

[79] The degree of linear polarization of the scattered

light for unpolarized incident light is given by the ratio �b1/

a1. The bottom left-hand plot of Figure 11 shows that the

most obvious effect of increasing N is to smooth out the

oscillations in the polarization curve for the single

wavelength-sized sphere and, on average, to make polariza-

tion more neutral. The standard multiple-scattering explana-

tion of this trait is that the main contribution to the second

Stokes parameter, Qsca, comes from the first order of

scattering, whereas light scattered many times (Figure 9f)

becomes largely unpolarized.

[80] The ratio a2/a1 is identically equal to unity for

scattering by a single sphere. Therefore, the rapidly growing

deviation of this ratio from 100% for N � 5 (Figure 11) can

again be interpreted as a direct consequence of the

strengthened depolarizing effect of multiple scattering.

Similarly, a3(Q) � a4(Q) and a3(180�)/a1(180�) = �1 for

single scattering by a spherically symmetric particle, but

multiple scattering in particle groups with N � 5 causes an

increasingly significant violation of these equalities.

[81] If the incident light is polarized linearly in the xz

plane, then Qinc = I inc and U inc = V inc = 0. The

corresponding angular distributions of the copolarized,

1

2
I sca þ Qscað Þ / 1

2
a1 Qð Þ þ 2b1 Qð Þ þ a2 Qð Þ½ �; ð50Þ

and cross-polarized,

1

2
I sca � Qscað Þ / 1

2
a1 Qð Þ � a2 Qð Þ½ �; ð51Þ

scattered intensities are shown in Figure 13. Figure 13 also

depicts the same helicity,

1

2
I sca þ V scað Þ / 1

2
a1 Qð Þ þ a4 Qð Þ½ �; ð52Þ

and opposite helicity,

1

2
I sca � V scað Þ / 1

2
a1 Qð Þ � a4 Qð Þ½ �; ð53Þ

scattered intensities for the case of incident light polarized

circularly in the counterclockwise direction when looking in

the direction of propagation (Qinc = Uinc = 0 and Vinc = Iinc).

All of these quantities exhibit WL in the form of

backscattering peaks growing in amplitude with N.

[82] By far, the most definitive demonstration of the onset

of the CB effect is provided by the (a1 � a2)/2 and (a1 + a4)/

2 curves in Figure 13. Indeed, the corresponding single-

particle curves show no backscattering enhancement at all,

so the backscattering peaks that develop with increasing N

(and thus with increasing amount of multiple scattering) can

be attributed unequivocally to WL.

[83] Figure 13 also depicts the angular profiles of the so-

called linear, mL, and circular, mC, polarization ratios defined

as the ratio of the cross-polarized to copolarized scattered

intensities and the ratio of the same helicity to the opposite

helicity scattered intensities:

mL ¼ I sca � Qsca

I sca þ Qsca
¼ a1 Qð Þ � a2 Qð Þ

a1 Qð Þ þ 2b1 Qð Þ þ a2 Qð Þ ð54Þ

mC ¼ I sca þ V sca

I sca � V sca
¼ a1 Qð Þ þ a4 Qð Þ

a1 Qð Þ � a4 Qð Þ : ð55Þ

These quantities are used widely in radar and lidar remote

sensing [Ulaby and Elachi, 1990; Ostro, 1993; Stephens,

1994; Campbell, 2002] because they vanish at the exact

backscattering direction if multiple scattering is insignif-

icant and the scattering particles are spherically symmetric.

Our results demonstrate convincingly that multiple scatter-

ing causes an increasingly significant deviation of mL(180�)
and mC(180�) from zero, while WL causes pronounced

backscattering peaks in the mL and mC angular profiles.

[84] The interference mechanism implies that the angular

widths of the forward scattering and CB peaks must be
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inversely proportional to k1R. To verify this, we have

performed computations assuming that the number of k1r =

4 particles is fixed at N = 8, whereas the size parameter of

the spherical volume is varied from k1R = 12 to 72 in steps

of 6. The arrangement of the eight particles inside the k1R =

12 volume is random but such that each particle is in contact

with at least one other particle. The other 10 particulate

volumes with k1R = 18, 24, . . ., 72 are obtained by

uniformly scaling all particle coordinates of the k1R = 12

volume while keeping the size of the particles fixed. This

procedure is illustrated in Figure 14, which shows the

original k1R = 12 volume and the derivative k1R = 24

volume. The corresponding T matrix results are depicted in

Figures 12c and 12d and demonstrate indeed that the widths

of both peaks decrease with increasing interparticle

separation, thereby corroborating their interference nature.

The nearly constant amplitude of the forward scattering

peak and the rapidly decreasing amplitude of the back-

Figure 13. Polarization characteristics of backscattered light computed for a k1R = 40 spherical volume
of discrete random medium filled with N = 1, . . ., 240 particles.
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scattering peak testify again that these features are caused

by single and multiple scattering, respectively. Indeed, the

single-scattering term does not and the multiple-scattering

terms do contain 1/(interparticle distance) factors in the far-

field order-of-scattering expansion (35).

[85] Although the results shown in Figures 11–13 are

based on averaging over orientations of only one random

N-particle configuration, they can be expected to be

statistically representative of all possible realizations of

the N-particle group at least for large N [Mishchenko et al.,

2007a]. This is well demonstrated by Figures 12e and 12f

computed for two different realizations of a 240-particle

group occupying a k1R = 40 spherical volume.

[86] Thus, the three fundamental classes of wavelet pairs

illustrated in Figures 9d–9f are the main contributors to the

scattering patterns shown in Figures 10–13. In sections 12

and 13 we will see how and to what extent they are

incorporated in the theories of RT and WL.

12. RADIATIVE TRANSFER THEORY

[87] We are now well prepared to proceed with the

outline of the RT theory by considering the scattering of a

plane electromagnetic wave by a large group of N particles

randomly distributed throughout a large 3-D volume V.

What follows is a brief sketch of the theory detailed in

chapter 8 of Mishchenko et al. [2006a].

[88] In accordance with the discussion in sections 9–11, the

derivation of the RTE involves several fundamental premises

and approximations. The first one is to assume that each

particle is located in the far-field zones of all the other particles

and that the observation point is also located in the far-field

zones of all the particles forming the scatteringmedium.Aswe

have seen, this assumption leads to a dramatic simplification of

the FLEs, wherein the latter are converted from a system of

volume integral equations into a system of linear algebraic

equations. However, it also limits the applicability of the final

result by requiring that the particles in the scattering medium

are not closely spaced, a condition that is, nonetheless, met in

many natural circumstances.

[89] The order-of-scattering form of the far-field FLEs

(equation (35)) allows one to represent the total electric field

at a point in space as a sum of contributions arising from

light-scattering paths going through all possible particle

sequences. The secondmajor assumption, called the Twersky

approximation [Twersky, 1964; Mishchenko et al., 2006a], is

that all paths going through a particle more than once can be

neglected. It is straightforward to demonstrate that doing

this is justified provided that the number of particles in the

scattering volume N is very large. Thus, instead of the

diagrammatic equation depicted in Figure 7, we will work

with a simplified version depicted in Figure 15.

[90] The third major assumption is that of full ergodicity,

which allows one to replace averaging over time by aver-

aging over particle positions and states; see section 10.

[91] The fourth major assumption is that (1) the position

and state of each particle are statistically independent of

each other and of the positions and states of all the other

particles and (2) the spatial distribution of the particles

throughout the medium is random and statistically uniform.

As one might expect, this assumption leads to a major

simplification of all analytical derivations. The practical

meaning of ergodicity and uniformity will be discussed at

the end of this section.

[92] The next major step is the characterization of the

multiply scattered radiation by the coherency dyadic

C
$

rð Þ ¼ hE r; tð Þ � E* r; tð Þit � hE rð Þ � E* rð ÞiR;x; ð56Þ

where the subscripts R and x denote averaging over all

particle coordinates and states, respectively. The state of a

particle can collectively indicate its size, refractive index,

shape, orientation, etc. The coherency dyadic is appro-

priately defined as a nonvanishing quantity; see section 6.

Because of the averaging over particle coordinates,$C(r) is

a continuous function of the position vector. Furthermore, as

we will see later, the coherency dyadic allows the definition

of derivative quantities that are observable directly.

[93] The Twersky expansion of the coherency dyadic is

depicted diagrammatically in Figure 16. To classify the

different terms entering the expanded expression inside

the angular brackets on the right-hand side of this equation,

we will use the notation illustrated in Figure 17a. In this

particular case, the upper and the lower scattering paths go

through different particles. However, the two paths can

involve one or more common particles, as shown in

Figures 17c and 17d by using the dashed connectors.

Furthermore, if the number of common particles is two or

more, they can enter the upper and lower paths in the same

order, as in Figure 17c, or in the reverse order, as in

Figure 17d. Figure 17e shows a mixed diagram in which

Figure 14. Spherical volumes filled with eight randomly
positioned, identical particles.

Figure 15. The Twersky approximation.

RG2003 Mishchenko: RADIATIVE TRANSFER AND WEAK LOCALIZATION

20 of 33

RG2003

)(rC



two common particles appear in the same order and two other

common particles appear in the reverse order. The contribu-

tion of this diagram to the coherency dyadic is simply

B
$
rij � B

$
ijk � B

$
jkl � B

$
kl0 � Einc

l

h i
� B

$
rik � B

$
ikj � B

$
kjl � B

$
jl0 � Einc

l

h i
*:

ð57Þ

By the nature of the Twersky approximation, neither the

upper path nor the lower path can go through a particle

more than once. Therefore, no particle can be the origin of

more than one connector.

[94] The next major assumption in the derivation of the

RTE is that all diagrams with crossing connectors can be

neglected. The rationale for making this assumption can be

illustrated by considering the contribution of the term

depicted in Figure 17e to the coherency dyadic. Indeed,

by substituting equations (37)–(40) in equation (57), we see

that the resulting expression includes a rapidly oscillating

exponential factor

exp ik1 Rij þ Rkl � Rik � Rjl

� �� �
:

This factor causes the contribution of this term to vanish

upon averaging over the positions of particles j and k within

the volume V provided that all linear dimensions of the

volume are much greater than the wavelength of the

incident light. However, there is a class of diagrams with

crossing connectors that can give a nonvanishing contribu-

tion to the coherency dyadic. This class will be discussed in

section 13.

[95] Let us now consider the contribution of the diagrams

with no crossing connectors like the one shown in Figure

17f. The presence of unconnected particle j in the upper

scattering path causes an exponential factor

exp ik1 Rij þ Rjk

� �� �
;

which oscillates rapidly everywhere in V except along the

straight line connecting the origins of particles i and k,

where this factor is constant. The stationary-phase evalua-

tion of the integral describing the average over all positions

of particle j yields a very important result: the only effect

particle j has in the context of this specific diagram is to

attenuate the field generated by particle k and exciting

particle i and to potentially cause dichroism. Similarly,

particles l, m, and n have any effect only when they all are

positioned along the straight line connecting the origins of

particles k and o, and this effect is again to cause attenuation

and, possibly, dichroism.

[96] Careful analytical evaluation of the cumulative po-

sition- and state-averaged contribution of all diagrams with

vertical connectors coupled with the assumption that N is

very large leads to the equation depicted diagrammatically

in Figure 18 [Mishchenko et al., 2006a]. The double-arrow

symbol denotes the incident field attenuated by the

unconnected particles on its way to the observation point

or to the rightmost connected particle, the double lines

denote similar attenuation by unconnected particles of a

wave propagating from one connected particle to another,

and S denote both the summation over all appropriate

particles and the averaging over the particle positions and

states. Owing to their appearance, the diagrams on the right-

hand side of this equation are called ladder diagrams.

Therefore, this diagrammatic formula can be called the

Figure 16. The Twersky expansion of the coherency dyadic.

Figure 17. Classification of terms entering the Twersky
expansion of the coherency dyadic. (a–c and f) Diagrams
with no crossing connectors. (d and e) Diagrams with
crossing connectors.
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ladder approximation for the coherency dyadic. Obviously,

the diagram visualized in Figure 9f and discussed in section

11.3 belongs to the class of ladder diagrams.

[97] The expanded expression for the ladder coherency

dyadic has the form of an angular decomposition in terms of

the so-called ladder specific coherency dyadic $SL(r, q̂):

C
$
L rð Þ ¼

Z
4p
dq̂S

$
L r; q̂ð Þ; ð58Þ

where the integration is performed over all propagation

directions as specified by the unit vector q̂. Furthermore, it

is straightforward to show that the specific coherency

dyadic satisfies an integral RTE [Mishchenko et al., 2006a].

The ladder specific coherency dyadic can, in turn, be used

to define the so-called specific intensity column vector,

~I r; q̂ð Þ¼

~I r; q̂ð Þ
~Q r; q̂ð Þ
~U r; q̂ð Þ
~V r; q̂ð Þ

2
664

3
775

¼1

2

ffiffiffiffiffi
�1
m0

r
q̂ q̂ð Þ � S

$
L r; q̂ð Þ � q̂ q̂ð Þ þ 8̂ q̂ð Þ � S

$
L r; q̂ð Þ � 8̂ q̂ð Þ

q̂ q̂ð Þ � S
$

L r; q̂ð Þ � q̂ q̂ð Þ � 8̂ q̂ð Þ � S
$

L r; q̂ð Þ � 8̂ q̂ð Þ
�q̂ q̂ð Þ � S

$
L r; q̂ð Þ � 8̂ q̂ð Þ � 8̂ q̂ð Þ � S

$
L r; q̂ð Þ � q̂ q̂ð Þ

i 8̂ q̂ð Þ � S
$

L r; q̂ð Þ � q̂ q̂ð Þ � q̂ q̂ð Þ � S
$

L r; q̂ð Þ � 8̂ q̂ð Þ
� �

2
6666664

3
7777775
;

ð59Þ

which also satisfies an integral RTE. Finally, the latter can

be converted into the following classical integrodifferential

form:

q̂ � r~I r; q̂ð Þ ¼ �n0hK q̂ð Þix~I r; q̂ð Þ þ n0

Z
4p
dq̂0hZ q̂; q̂0

� �
ix~I r; q̂

0� �
:

ð60Þ

In equation (60), hK(q̂)ix and hZ(q̂, q̂0)ix are the extinction

and the phase matrix, respectively, averaged over all particle

states, and n0 = N/V is the particle number density. The

specific intensity column vector can be decomposed into the

coherent and diffuse parts,

~I r; q̂ð Þ ¼ d q̂� n̂inc
� �

Ic rð Þ þ~Id r; q̂ð Þ; ð61Þ

each satisfying its own RTE:

n̂inc � rIc rð Þ ¼ �n0 K n̂inc
� �� �

xIc rð Þ; ð62Þ

q̂ � r~Id r; q̂ð Þ ¼ � n0 K q̂ð Þh ix~Id r; q̂ð Þ

þ n0

Z
4p
dq̂0 Z q̂; q̂0

� �� �
x
~Id r; q̂0
� �

þ n0 Z q̂; n̂inc
� �� �

xIc rð Þ: ð63Þ

Ic reduces to the Stokes column vector of the incident wave

at the illuminated boundary of the medium but is subject to

exponential attenuation and, possibly, the effect of dichro-

ism inside the medium.

[98] The RTE (60) becomes considerably simpler in the

case of a plane-parallel, macroscopically isotropic and

mirror-symmetric scattering medium [Hovenier et al.,

2004; Mishchenko et al., 2006a]:

u
d~I t; q̂ð Þ

dt
¼ �~I t; q̂ð Þ þ 1

Cexth ix

Z
4p
dq̂0 Z q̂; q̂0

� �� �
x
~I t; q̂0
� �

; ð64Þ

where dt = n0hCextixdz is the differential element of the

optical depth, hCextix is the average extinction cross section

per particle, and u = �cosq is the direction cosine. The z

axis of the laboratory right-handed coordinate system is

assumed to be perpendicular to the plane boundaries of the

medium and directed outward.

[99] The most important corollaries of the microphysical

derivation of the RTE are the following [Mishchenko et al.,

2006a]:

[100] 1. The derivation of the RTE does not need funda-

mental physical laws other than those already contained in

the classical frequency domain macroscopic electromag-

netics. In particular, the ill-defined concepts of collective

effects, elementary volume elements, incoherent light rays,

and photons as localized particles of light have no relevance

whatsoever to the transfer of electromagnetic radiation in

elastically scattering discrete random media. It is, in fact,

remarkable that although the RTE (60) has the formal

mathematical structure of a kinetic equation describing

particle transport [Boltzmann, 1964], it follows directly

from the electromagnetic wave theory.

[101] 2. The RTE is derived by keeping only one class of

wavelet pairs, illustrated by Figures 9f and 17f. The effect

of unconnected particles is reduced to attenuation and

dichroism.

[102] 3. In the context of the RT theory, the scattering

properties of particles are specified in terms of the extinc-

tion and phase matrices rather than in terms of the scattering

Figure 18. Ladder approximation for the coherency
dyadic.
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dyadic or the scattering amplitude matrix. Each particle with

its individual extinction and phase matrices is effectively

replaced with an average particle having the extinction and

phase matrices obtained by averaging over all particle

states.

[103] 4. In the framework of the exact FLEs, the source of

multiple scattering is the constant-amplitude incident field

(equation (32)). In the framework of the approximate RT

theory, this role is effectively assumed by the exponentially

attenuated coherent (or ‘‘unscattered’’) part of the specific

intensity column vector described by equation (62).

[104] 5. Averaging over all particle positions makes Ic and
~Id continuous functions of the position vector of the obser-

vation point r and also makes~Id a continuous function of the
propagation direction q̂.
[105] 6. For the same reason, ~I differs from the Stokes

column vector of a transverse electromagnetic wave I, in
that it has the dimension of monochromatic radiance (W

m�2 sr�1) rather than the dimension of monochromatic

energy flux (W m�2). The reader can see readily that this

particular dimension of ~I is a direct consequence of the

definition (56), the angular decomposition of $CL(r)

according to equation (58), and the definition (59).

[106] 7. The RTE is an inherently vector equation. The

frequently used scalar version of the RTE is obtained by

artificially replacing the specific intensity vector by its first

element (i.e., the specific intensity) and the extinction and

phase matrices by their respective (1, 1) elements. As such,

the scalar approximation has no compelling physical justi-

fication besides being easier to solve and providing accept-

able accuracy in many cases [Mishchenko et al., 2006a].

[107] 8. The RTE remains valid if the incident light is a

parallel quasi-monochromatic beam.

[108] The integral form of the RTE can be used to clarify

the physical meaning of the coherent Stokes column vector
Ic and the diffuse specific intensity column vector ~Id. The
fundamental difference between these quantities is that the

former describes a monodirectional whereas the latter

describes an uncollimated flow of electromagnetic energy

(equation (61)). In particular, the first element of the

coherent Stokes column vector, i.e., the coherent intensity

Ic(r), is the electromagnetic power per unit area of a small

surface element DS perpendicular to the incidence direction
n̂inc, whereas the first element of the diffuse specific

intensity column vector, i.e., the diffuse specific intensity

~Id(r, q̂), is the electromagnetic power per unit area of a

small surface element DS perpendicular to q̂ per one

steradian of a small solid angle DW centered around q̂
(Figure 19).

[109] This interpretation of Ic(r) and ~Id(r, q̂) implies that

both quantities can be measured by appropriately placed and

oriented detectors of electromagnetic energy flux. Indeed,

the instantaneous direction of the electromagnetic energy

flow is given by the Poynting vector and changes rapidly

inside a discrete random medium owing to changing particle

positions. Therefore, at any given moment in time, a well-

collimated detector of electromagnetic energy flux placed

inside the medium may or may not register any signal

depending on its specific instantaneous orientation. Aver-

aging over time (or, equivalently, over particle positions)

ensures that the reading of the detector is always nonzero

and is a continuous function of its orientation. The fact that

the specific intensity column vector can be both computed

theoretically by solving the RTE and measured with a

suitable optical device explains the practical usefulness of

the RT theory in countless applications in various branches

of science and engineering.

[110] Since the microphysical derivation of the RTE

involves statistical averaging over particle states and posi-

tions, neither the coherent Stokes column vector nor the

diffuse specific intensity column vector characterize the

instantaneous distribution of the radiation field inside the

scattering medium. Instead, they characterize the directional

flow of electromagnetic radiation averaged over a suffi-

ciently long period of time. This conclusion is consistent

with the discussion in section 11.3. The minimal averaging

time necessary to ensure ergodicity may be different for

different scattering systems, but the following is always

true: the longer the averaging time the more accurate the

theoretical prediction based on the RTE. Accumulating a

signal over an extended period of time is often used to

improve the accuracy of a measurement by reducing the

effect of random noise. However, the situation with the RT

theory is fundamentally different in that averaging the signal

over an extended period of time is necessary to ensure the

very applicability of the RTE.

[111] Although the microphysical derivation of the RTE

rests on several fundamental premises discussed above,

most of them appear to be quite realistic in a great variety

of applications. However, the assumptions of ergodicity and

spatial uniformity deserve further analysis since they may

appear to be too restrictive for the RTE to be useful.

[112] The meaning of the assumptions of ergodicity and

uniformity is illustrated in Figure 20. The detector of

electromagnetic energy has an angular aperture small

enough to resolve the angular variability of the diffuse

radiation field (e.g., �1�) and a finite acceptance area DS.

Both define the part of the scattering volume V bounded

schematically by the dotted lines in Figure 20; this part will

be called the acceptance volume. According to the integral

form of the RTE, all energy recorded by the detector comes

directly from the particles contained in the acceptance

volume. The energy exciting each particle can be either the

Figure 19. Physical meaning of (a) coherent intensity and
(b) specific intensity.
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(attenuated) incident light or the light scattered by the other

particles. The light scattered by a particle from the

acceptance volume toward the detector can be attenuated

by other particles located closer to the detector.

[113] Let us assume that the detector accumulates the

signal over a time interval Dt and subdivide the acceptance

volume into a number of sampling volumes such that their

optical thicknessDt along the line of sight of the detector is

very small (�0.01). One of these sampling volumes is

shown schematically in Figure 20. Obviously, the contribu-

tion of a particle to the detector signal is essentially

independent of the specific particle position in the sampling

volume. Therefore, the strict meaning of the assumptions of

ergodicity and statistical uniformity of particle positions

within the scattering volume V is that each particle visits

each sampling volume during the measurement interval Dt.

[114] In reality, the scattering volume V contains many

particles of the same type. Therefore, the practical meaning

of ergodicity and uniformity is that particles of each type

visit each sampling volume during the measurement interval

Dt a number of times statistically representative of the total

number of such particles in the entire scattering volume.

Obviously, this requirement is significantly softer and can

be expected to be met in many actual circumstances.

13. WEAK LOCALIZATION

[115] Consider again a scattering object in the form of a

large group of discrete, randomly and sparsely distributed

particles (Figure 21). The object is illuminated by a plane

electromagnetic wave propagating in the direction n̂inc. The

reader should recall that the RTE is derived by neglecting all

diagrams with crossing connectors in the diagrammatic

representation of the coherency dyadic. Following the line

of reasoning outlined in section 12, one may indeed

conclude that upon statistical averaging the contribution of

all the diagrams of the type illustrated in Figure 22 must

vanish at near-field observation points located either inside

the object (observation point 1 in Figure 21) or outside the

object (observation point 2).

[116] However, we have already discussed in section 11.3

that there is an exception corresponding to the situation

when the observation point is in the far-field zone of the

scattering object and is located within its ‘‘back shadow’’

(observation point 3 in Figure 21). Then the class of

diagrams illustrated by Figure 9e and Figures 22c–22e

gives a nonzero contribution that causes the WL effect.

These diagrams are called maximally crossed since they can

be drawn in such a way that all connectors cross at one

point.

[117] The expression for the cumulative contribution of

all maximally crossed (or cyclical) diagrams to the coher-

ency dyadic at an observation point can be derived using the

diagrammatic technique introduced in section 12. The final

result can be summarized by the diagrammatic expression

shown in Figure 23. As before, S denotes both the sum-

mation over all appropriate particles and the statistical

averaging over the particle states and positions, whereas

the double lines account for the effect of exponential

Figure 20. Practical meaning of the assumptions of
ergodicity and uniformity.

Figure 21. Scattering of a plane electromagnetic wave by a volume of sparse, discrete random medium.
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attenuation and, possibly, dichroism. It is very instructive to

compare Figure 23 with Figure 18 since this comparison

reveals quite vividly the morphological difference between

the participating diagrams. The total coherency dyadic is

now approximated by the following expression:

C
$

� C
$

L þ C
$

C: ð65Þ

[118] The inclusion of the cyclical diagrams makes the

computation of the coherency dyadic much more involved

and limits the range of problems that can be solved

accurately. In particular, no closed-form equation similar

to the RTE has been derived to describe the CB contribution

to the specific coherency dyadic, $SC(r, q̂). However, the
reciprocal nature of each single-scattering event leads to an

interesting exact result: the characteristics of the CB effect

at the exact backscattering direction can be rigorously

expressed in terms of the solution of the RTE [Mishchenko,

1992]. This result as well as other theoretical and numerical

approaches to the problem of WL are reviewed by

Barabanenkov et al. [1991], Kuz’min and Romanov

[1996], van Rossum and Nieuwenhuizen [1999], Lenke

and Maret [2000], Muinonen [2004], and Mishchenko et al.

[2006a].

[119] The angular width of the CB effect is inversely

proportional to k1hli, where hli is the average distance

between the end particles of the various particle sequences

such as those shown in Figure 9e. Factors limiting hli and
thereby increasing the angular width of the various

manifestations of CB are absorption by particles and a

finite size of the scattering medium. The finite size effect is

well illustrated by Figure 12d. For optically thick media, a

good proxy to hli is the so-called transport mean free path ltr
[Ishimaru, 1978].

[120] The angular width of the various CB features for

objects such as water clouds is extremely small and can

hardly be observed with passive instruments measuring the

scattered sunlight since in this case ltr is many orders of

magnitude greater than the wavelength. However, CB can

substantially affect the results of active observations of

clouds with lidars and radars [e.g., Kobayashi et al., 2007]

since these instruments observe electromagnetic radiation

scattered in exactly the backscattering direction.

[121] The situation is different for densely packed partic-

ulate media, in which case ltr can be comparable to the

wavelength of the incident light. As a consequence, CB can

be detectable not only with active instruments or specifi-

cally designed laboratory equipment [e.g., Labeyrie et al.,

2000; Gross et al., 2007; Psarev et al., 2007] but even in

telescopic observations of sunlight scattered by surfaces of

high-albedo solar system bodies (e.g., Rosenbush et al.

[2002],Mishchenko et al. [2006b], French et al. [2007], and

references therein). It is important to recognize, however,

that the very concept of wave phase applies only to

transverse waves such as plane and spherical waves.

Therefore, the interference explanation of WL is implicitly

based on the assumption that each particle in any particle

string (Figure 9e) is located in the far-field zones of the

previous and the following particle. This assumption can

often be violated in densely packed particulate media.

However, the presence of strong CB peaks in the exact T

matrix results obtained for 240 densely packed particles

(Figures 12b and 13) indicates that the wavelets scattered

along strings of widely separated particles still provide a

significant contribution to the total scattered signal.

[122] Monostatic radars use the same antenna to transmit

and receive electromagnetic waves. Therefore, radar meas-

urements of particulate media are inevitably affected by

WL. Several solar system objects have been found to

generate radar returns quite uncharacteristic of bare solid

surfaces. For example, the icy Galilean satellites of Jupiter

exhibit both high radar reflectivities and circular polariza-

tion ratios exceeding one [Ostro, 1993]. Similar radar

echoes have been detected in radar observations of the poles

of Mercury [Harmon et al., 1994]. These measurements

have been interpreted in terms of multiple scattering,

including WL, of electromagnetic waves by voids or rocks

imbedded in a transparent layer of ice [Hapke, 1993;

Mishchenko et al., 2006a].

[123] The interference explanation of WL assumes that

the observer is located in the far-field zone of the entire

scattering medium. In reality, the various manifestations of

CB can be observed at distances shorter than those dictated

by equation (16). Specifically, the distance r from the

scattering medium to the observation point must satisfy the

following inequality [Mishchenko et al., 2006a]:

r � 1

2
k1hli2: ð66Þ

Figure 22. Diagrams with crossing connectors.

Figure 23. The cyclical part of the coherency dyadic.
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However, the requirement (66) can be rather demanding if

the scattering medium is composed of nonabsorbing,

wavelength-sized or larger particles and its minimal

dimension is greater than ltr.

14. FORWARD SCATTERING INTERFERENCE

[124] Similarly to CB, the forward scattering localization

of electromagnetic waves discussed in section 11.3 and

illustrated in Figure 9d is an expressly far-field scattering

effect and as such is not accounted for by the RTE. Indeed,

it can be readily shown that the contribution of the diagrams

of the type shown in Figure 17b evaluated at a near-field

observation point does not vanish only when both particles

are positioned along the same straight line parallel to the

incidence direction and going through the observation

point. This nonvanishing contribution is ultimately included

in the exponentially attenuated coherent Stokes column

vector Ic.
[125] In order to observe the forward scattering interfer-

ence effect directly, the observation point must be located in

the far-field zone, i.e., at a distance r from the scattering

volume satisfying the inequalities (14)–(16). This factor

makes the RTE a rather robust approximation. To appreciate

this point, one can apply equation (16) to a small cloud of

water droplets with a typical dimension of 100 m assuming

that the incident wavelength is 500 nm. Simple arithmetic

then yields r � 1010 m.

15. WHAT IS INDEPENDENT SCATTERING?

[126] We have seen before that at any moment in time, the

incident electromagnetic wave perceives the entire multi-

particle group as a unified, albeit morphologically complex,

scatterer. We have also witnessed how the RTE emerges

from the Maxwell equations as a consequence of several

assumptions (such as wide interparticle separation) and, in

the final analysis, contains (ensemble averaged) single-

particle extinction and phase matrices. However, a tradi-

tional (and incorrect!) way of dealing with the problem of

multiple scattering and RT has been to proceed in the

opposite direction: by first considering widely separated,

randomly positioned particles as ‘‘independent scatterers,’’

then assigning to them individual extinction and phase

matrices, then considering ‘‘incoherent’’ single and multiple

scattering by the ‘‘independently scattering particles,’’ and

finally speculating how the individual scattering properties

of the particles can change as a consequence of various

‘‘packing density’’ effects.

[127] It is thus clear that the notion of ‘‘independent

scattering’’ has been very important to the discipline of

light scattering by particle groups. Several definitions of

‘‘independently scattering particles’’ have been given in the

literature (e.g., van de Hulst [1957], Cartigny et al. [1986],

Tien [1988], Kumar and Tien [1990], Ivezić and Mengüç

[1996], Liou [2002], Mishchenko et al. [2002, 2006a],

Martin [2006], and references therein). Some of these

definitions may be rather vague, and some of them actually

refer to what is otherwise known as the ‘‘single-scattering

approximation’’ relevant to the case of scattering by a small

group of widely separated particles [Agarwal and Mengüç,

1991; Mishchenko et al., 2006a, 2007b]. (It should be kept

in mind that the specific conditions of applicability of the

single-scattering and RT approximations in terms of the

minimal average interparticle separation can be somewhat

different [Mishchenko et al., 2006a].) The common intent of

these definitions has been to ensure that observable

consequences of scattering by a multiparticle group are

ultimately described in terms of the extinction and phase

matrices of the individual particles, i.e., the quantities

describing single-particle transformations of Stokes para-

meters rather than electric fields.

[128] The microphysical approach outlined above makes

it quite clear that a particle is an independent scatterer only

when it is completely alone. Particles forming a group

cannot be independent scatterers irrespective of how widely

they are separated and how randomly they are distributed

since the forward scattering interference and CB effects are

ubiquitous and cannot be described in terms of individual

particle extinction and phase matrices. In the case of large

rarefied objects such as terrestrial water clouds, the forward

scattering and CB intensity peaks are extremely narrow,

contain a negligible fraction of the total scattered energy,

and are hardly observable, thereby making the RT theory a

very good quantitative descriptor of many actual observ-

ables. We have seen, however, that even in the limited

context of the RT theory, particles are not characterized by

their individual extinction and phase matrices. Instead, each

particle is replaced by an ‘‘average’’ particle characterized

by the ensemble-averaged extinction and phase matrices.

[129] We must therefore conclude that the term ‘‘inde-

pendent scattering’’ has little heuristic value and can, in fact,

be quite misleading. Perhaps the least ambiguous, albeit still

undesirable, way to use this term is in application to

randomly positioned particles located in the far-field zones

of each other, since the randomness and far-field conditions

are necessary in the theories of RT and WL.

16. RADIATIVE TRANSFER IN GASEOUS MEDIA

[130] It is well known that multiple scattering can be

caused not only by particles but also by density and

anisotropy fluctuations in rarefied molecular media such

as gases [von Smoluchowski, 1908]. This type of scattering

is traditionally called Rayleigh scattering and is thoroughly

reviewed by Fabelinskii [1968] and Kuz’min et al. [1994].

Each density and/or anisotropy fluctuation can be consid-

ered a particle in the sense of causing the electric

permittivity (or, in general, the electric permittivity tensor)

in a small volume element to be different from that of the

surrounding medium. As long as such volume elements are

located in the far-field zones of each other, the micro-

physical approach outlined in section 12 remains applicable,

thereby leading to the classical RTE describing multiple

Rayleigh scattering [Chandrasekhar, 1950]. The specific

form of the corresponding extinction and phase matrices
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depends on the type of gas (or gas mixture) and on factors

such as gaseous pressure and temperature.

[131] It is sometimes stated that the actual cause of

Rayleigh scattering are randomly positioned and randomly

moving individual molecules rather than electric permittiv-

ity fluctuations. However, molecules can often be separated

by distances much smaller than the wavelength, thereby

grossly violating the far-field zone assumption used to

derive the RTE. Of course, one cannot exclude completely

the possibility that the RTE can be derived without the far-

field zone assumption, but until and unless this is done, it is

more prudent to attribute Rayleigh scattering to molecular

fluctuations rather than to the individual molecules.

[132] Quite often a gaseous medium contains randomly

distributed macroscopic particles. Typical examples are

aerosols and cloud particles suspended in a planetary

atmosphere. The RTE still remains applicable provided that

the particles and the density/anisotropy fluctuations are

located in the far-field zones of each other. The phase and

extinction matrices entering the RTE are obtained by

straightforward averaging over the gas-particle mixture.

17. ENERGY CONSERVATION

[133] An interesting and practically important property of

the RTE is that it satisfies precisely the energy conservation

law. Indeed, using the vector identity a � rf = r � (af ) � fr
� a, where f is any scalar function of spatial coordinates, and

taking into account that q̂ is a constant vector, we can

rewrite equation (60) in the form

r � q̂ ~I r; q̂ð Þ
h i

¼� n0 K r; q̂ð Þh ix~I r; q̂ð Þ

þ n0

Z
4p
dq̂0 Z q̂; q̂0

� �� �
x
~I r; q̂0
� �

: ð67Þ

Let us now introduce the flux density vector as

F rð Þ ¼
Z
4p
dq̂q̂~I r; q̂ð Þ: ð68Þ

Obviously, the product p̂ � F(r)dS gives the amount and the

direction of the net flow of power through a surface element

dS normal to p̂ (see Figure 24). Integrating both sides of

equation (67) over all directions q̂ yields [Mishchenko et al.,

2006a]

�r � F rð Þ ¼ n0

Z
4p
dq̂ Cabs q̂ð Þh ix~I r;qð Þ; ð69Þ

where hCabs(q̂)ix is the ensemble-averaged absorption cross

section per particle. The physical meaning of this formula is

very transparent: the net inflow of electromagnetic power

per unit volume is equal to the total power absorbed per unit

volume. If the particles forming the scattering medium are

nonabsorbing so that hCabs(q̂)ix = 0, then the flux density

vector is divergence-free:

r � F rð Þ ¼ 0: ð70Þ

This is a manifestation of the conservation of the power

flux, which means that the amount of electromagnetic

energy entering a volume element per unit time is equal to

the amount of electromagnetic energy leaving the volume

element per unit time.

[134] The discussion in section 12 clearly shows that the

RTE follows from the Maxwell equations only after several

simplifying assumptions have been made. Therefore, the

fact that the RTE fully complies with the energy conserva-

tion law is as much troubling as it is encouraging. Indeed,

attempting to improve the accuracy of RTE predictions by

including the maximally crossed diagrams appears to de-

stroy energy conservation by adding the ‘‘surplus’’ energy

contained in the CB intensity peak. It remains unclear

whether this additional energy is ‘‘taken’’ from the far

wings of the backscattering peak, which would imply that

the contribution of the maximally crossed diagrams to the

specific intensity at certain reflection directions may be

negative [cf. van Tiggelen et al., 1995]. It is also possible

that the negative contribution restoring energy conservation

is supplied by all the other diagram types not accounted for

by the microphysical RT and WL theories.

18. DISCUSSION

[135] The discussion in sections 12 and 13 shows that the

theories of RT and WL follow from the macroscopic

frequency domain Maxwell equations as a consequence of

several well-defined approximations. This does not mean,

of course, that all of these approximations are mandatory

and that the RT and WL theories cannot be derived under

less restrictive assumptions. However, until and unless the

latter has been done, it is prudent to consider the approx-

imations introduced in sections 12 and 13 as necessary.

[136] An instructive way to look at the microphysical

approach to RT and WL is in terms of the famous classi-

fication of the methods used to solve problems of wave

propagation in random media into two categories, called

‘‘honest’’ and ‘‘dishonest’’ [Keller, 1962]. Specifically, let

us assume that a wave is described by a vector-valued

function u(r, t) of the position vector and time. As in section

Figure 24. Electromagnetic power through an elementary
surface element.
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10, we denote by y the full set of parameters defining the

state of the entire scattering medium at a moment in time.

According to Keller [1962, p. 228],

in an honest method the solution u(r, t, y) is first determined

for each value of y. The solution may sometimes be found

exactly and explicitly, but more often it is expressed in the

form of a series in some parameter, or as a sequence of

iterates, or by some other approximation procedure. In the

process of solving for u(r, t, y) randomness plays no role,

and therefore it provides no advantage. The second step is to

compute the mean value of u(r, t, y), as well as its variance
and other statistics, from the explicit expression. In this step

randomness may have the helpful effect of yielding simpler

expressions for the statistics of u than those for u itself. In a

dishonest method randomness is utilized before u(r, t, y) is
determined. In all cases probability is introduced before u is

determined and an unproved assumption is made about

some statistical property of the random wave motion. The

assumption usually simplifies the problem so that it becomes

solvable.

The reader can easily recognize that the microphysical
approach to RT and WL described above belongs to the
category of ‘‘honest’’ methods.

[137] Figure 25 provides a schematic summary of the

microphysical theories of RT and WL and classifies their

place within the broader context of classical macroscopic

electromagnetics. It also helps to formulate problems that

still await solution.

[138] First of all, by using as the starting point the

macroscopic frequency domain Maxwell equations, we

have completely excluded from consideration such phenom-

ena as emission and frequency redistribution as well as

situations involving finite beam and/or pulsed illumination.

These areas of electromagnetic energy transfer remain

purely phenomenological (e.g., Ivanov [1969], Oxenius

[1986], Hanel et al. [2003], Mätzler [2006], Wehrse and

Kalkofen [2006], Ito et al. [2007], and references therein)

and invoke the RTE without strict derivation from first

physical principles. As usual, the use of ‘‘photons’’ is

widespread, but the electromagnetic field is rarely, if ever,

quantized explicitly.

[139] Another challenging area of research is RT in

stochastic heterogeneous media composed of widely sepa-

rated yet spatially correlated particles. For example, it has

been suggested in recent publications [Shaw et al., 2002;

Knyazikhin et al., 2005a; Marshak et al., 2005] that cloud

droplets belonging to a particular size range may tend to

form groups of spatially correlated particles (clusters)

imbedded in an otherwise homogeneous cloud. It was

shown by Mishchenko [2006] on the basis of the

microphysical approach that as long as such inclusions are

small and specific assumptions of ergodicity and spatial

uniformity hold, one can still apply the classical RTE in

which the participating extinction and phase matrices are

obtained by averaging the respective single-particle ma-

trices over all the particles constituting the cloud. However,

this result may not necessarily apply to clouds with larger

inhomogeneities.

[140] Apart from Mishchenko [2006], the problem of

multiple scattering in stochastic media composed of widely

separated yet correlated particles has been analyzed so far

by using the motley concepts of the phenomenological RT

theory, including the fictitious ‘‘photons’’ (e.g., Pomraning

[1991], Cairns et al. [2000], Kostinski [2001], Petty [2002],

Barker et al. [2003], Borovoi [2006], Davis [2006], and

references therein). We have seen in section 12 that the

extinction and phase matrices appear in the standard RTE as

a consequence of well-defined assumptions and approxima-

tions and only as ensemble-averaged quantities. In the

phenomenological stochastic RT theory, the extinction and

phase matrices are taken for granted and are postulated to be

the primary optical attributes of the individual particles. In

this sense the phenomenological theory belongs to the

category of ‘‘dishonest’’ methods. Clearly, a systematic

application of the ‘‘honest’’ microphysical approach is

necessary to determine whether and to what extent the

concepts of extinction and phase matrices can be applied to

correlated particles.

[141] Many geophysical scattering media are composed

of densely packed and strongly correlated particles. Typical

examples are snow [Wiscombe and Warren, 1980; Dozier

and Painter, 2004; Kaasalainen et al., 2006], soil [Irons et

al., 1992], and regolith surfaces [Hapke, 1993; Shkuratov et

al., 2007] as well as vegetation [Myneni et al., 1992]. There

is a rapidly growing number of publications in which

numerical solutions of the RTE are used to model

directional reflectance and transmittance characteristics of

the various densely packed particulate media (see, e.g.,

Leroux et al. [1999], Mishchenko et al. [1999], Petrova et

al. [2001], Kokhanovsky [2004], Liang [2004], Okin and

Painter [2004], Knyazikhin et al. [2005b], Tanikawa et al.

[2006], Xie et al. [2006], and references therein). The reader

can recall that the formal applicability of the RT theory rests

on the assumption that scattering particles are located in

each other’s far-field zones and are uncorrelated. The

obvious violation of these assumptions in the case of

densely packed particles can lead to significant deviations

from the numerical predictions based on the RTE. There-

fore, it is important to analyze both theoretically and

experimentally to what extent the classical RT theory can be

applied to densely packed particulate media. Some progress

in this direction has been reported by Sergent et al. [1998],

Hespel et al. [2003], Painter and Dozier [2004], Pitman et

al. [2005], and Zhang and Voss [2005].

[142] The rigorous analytical theory of electromagnetic

energy transport in densely packed particulate media is still

at an early stage of development [Tsang and Kong, 2001;

Tsang et al., 2007; Tishkovets, 2007]. There are several

‘‘dishonest’’ phenomenological approaches to this problem

that start with the notion of ‘‘independent scattering’’ and

attempt to predict the modification of the phase and

extinction matrices by effects of packing density, but the

heuristic value of such approximations is limited, and their

range of validity is unknown [Hapke, 1993]. The same is

true of the phenomenological approaches based on the use

of the geometric optics approximation and Monte Carlo ray

tracing, even if electric fields rather than Stokes column

vectors are traced [e.g., Stankevich et al., 2007]. Fortu-
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nately, as we have seen in section 11, the ever increasing

power of scientific workstations and the availability of

efficient numerical techniques have led to the emergence of

an accurate quantitative approach to this complex problem

based on direct computer solutions of the Maxwell

equations [Mackowski, 2006; Tseng et al., 2006;Mishchenko

and Liu, 2007; Mishchenko et al., 2007a].

[143] Another important problem is electromagnetic scat-

tering by a medium composed of randomly positioned

particles and adjacent to a random rough boundary such

as the ocean surface. Although problems like this one are

important in practice and have been treated using various

phenomenological approaches, microphysical treatments

based on consistent application of the Maxwell equations

have been extremely scarce.

19. SUMMARY

[144] If one can address the problem of electromagnetic

scattering by a volume of discrete random medium using a

numerically exact solver of the Maxwell equations, then the

final result is accurate for any directions of incidence and

Figure 25. Classification of electromagnetic scattering problems.
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scattering and fully complies with energy conservation.

There is no need to invoke the mathematical concept or

multiple scattering, to subdivide the exact solution into

artificial parts such as the forward scattering interference

component, the RT component, the CB component, etc., and

to distinguish artificially between ‘‘independent-scattering’’

and ‘‘dependent-scattering’’ regimes. Therefore, direct nu-

merical solvers of the Maxwell equations should be used as

much as possible both to predict the radiative properties of a

discrete random medium and as an integral part of nonin-

vasive particle characterization techniques.

[145] For practical reasons, the range of applicability of

the above direct approach is still quite limited, thereby

justifying the use of an approximate methodology. Still,

one should always ensure that the approximate computa-

tional technique can be traced directly to a fundamental

physical theory and is self-consistent. Hence the great

heuristic value of the unified microphysical approach out-

lined in this review. Indeed, the microphysical approach has

demonstrated that the theories of RT and WL are closely

related and are, in fact, approximate solutions of the

Maxwell equations in that the derivation of neither theory

needs any basic physical postulates and concepts other than

those contained in classical macroscopic electromagnetics.

Furthermore, the origin and exact physical meaning of all

participating quantities as well as their relation to more

fundamental physical quantities has become clear and

unambiguous, while the range of applicability of the theo-

ries of RT and WL has become well defined.

[146] Recognizing, understanding, and quantifying the

limitations of an approximation is the first step toward a

more accurate approach. It is clear in this regard that in

order to be physically solvent, any improvement to the RT

and WL approximations should originate directly in the

Maxwell equations. This is especially true of media com-

posed of densely packed particles. Unfortunately, the rap-

idly growing complexity of analytical approximations may

render them as computer intensive as a numerically exact

solution. Therefore, there is little doubt that definitive

quantitative analyses of scattering measurements for dense-

ly packed particulate media will eventually be based on

direct computer solutions of the Maxwell equations. The

obvious advantage of this approach is that it can potentially

be used to determine all quantitative scattering character-

istics of a complex particulate system, including ones that

may not be easy to observe.

APPENDIX A: DYADS AND DYADICS

[147] The result of a dyadic operating on a vector is

another vector. This operation may be thought of as a 3 
 3

matrix representing the dyadic multiplying a column matrix

consisting of the initial vector components, thereby produc-

ing another column matrix consisting of the resulting vector

components. The components of both vectors must be

specified in the same coordinate system. From a coordi-

nate-free standpoint, a dyadic can be introduced as a sum of

so-called dyads, each dyad being the result of a dyadic

product of two vectors a � b such that the operation (a � b)

� c yields the vector a(b � c) and the operation c � (a � b)

yields the vector (c � a)b. Any dyadic can be represented as a

sum of at most nine dyads. The vector product (a � b) 
 c is

defined as a dyad a� (b
 c), and c
 (a� b) yields (c
 a)�
b. The dot product of dyads a � b and c � d yields the dyad

(b � c)(a� d). Formore details seeAppendixA ofMishchenko

et al. [2006a] or Appendix 4 of Van Bladel [2007].
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